Simplify the following expressions using laws of logic and put what law of logic did you use or apply.
(1) "p \\vee \\sim (\\sim p\\to q)"
"=p \\vee \\sim(p\\vee q)" Implication
"=p\\vee (\\sim p \\wedge \\sim q)" De- Morgan's law
"=(p \\vee \\sim p)\\wedge(p \\vee \\sim q)" Distributive law
"=1 \\wedge(p\\vee \\sim q)" Known tautology
"=(p \\vee \\sim q)" Dominance
"=(\\sim q \\vee p)" Commutative
"=q\\to p" Implication
(2)"[(p \\to q) \\wedge \\sim q]\\to \\sim p"
"=\\sim[(p \\to q) \\wedge \\sim q] \\vee \\sim p" Implication
"=\\sim[(\\sim p \\vee q) \\wedge \\sim q] \\vee \\sim p" Implication
"=\\sim[(\\sim p \\wedge \\sim q) \\vee (q \\wedge \\sim q)]\\vee \\sim p" Distributive
"=" "\\sim [(\\sim p \\wedge \\sim q)\\vee 0]\\vee \\sim p" Known contradiction
"=\\sim [(\\sim p \\wedge \\sim q)] \\vee \\sim p" Dominance
"=(p\\vee q) \\vee \\sim p" De Morgan's Law
"=(p\\vee \\sim p) \\vee q" Associativity
"= 1\\vee q" Known tautology
"=1" Dominance
(3)"[(p \\vee q)\\wedge (p \\to \\sim r) \\wedge r] \\to q"
"=[(p\\vee q)\\wedge ( \\sim p \\vee \\sim r)\\wedge r]\\to q" Implication
"=[(p \\vee q) \\wedge (\\sim p \\wedge r) \\vee ( \\sim r \\wedge r)]\\to q" Distributive
"=[(p \\vee q) \\wedge(\\sim p \\wedge r) \\vee 0]\\to q" Known contradiction
"=[(p \\vee q] \\wedge (\\sim p \\wedge r)]\\to q" Dominance
"=\\sim[(p \\vee q) \\wedge (\\sim p \\wedge r)] \\to q" Implication
"=\\sim(p \\vee q) \\vee \\sim (\\sim p \\wedge r) \\vee q" De Morgan
"=\\sim (p \\vee q) \\vee (p \\vee \\sim r) \\vee q" De Morgan
"=\\sim(p \\vee q) \\vee (p\\vee q)\\vee \\sim r" Associativity
"=1 \\vee \\sim r" Known tautology
"=1" Dominance
(4)"(p \\vee \\sim q)\\wedge (p \\vee q)"
"=p \\vee (\\sim q \\wedge q)" Distributive law
"=p \\vee 0" Known contradiction
"=p" Dominance
(5)"\\sim[p \\to \\sim (p \\wedge q)]"
"=\\sim[\\sim p\\vee \\sim(p \\wedge q)]" Implication
"=p \\wedge(p \\wedge q)" De Morgan's Law
"=(p \\wedge p) \\wedge q" Associative
"=p \\wedge q" Idempotent
Comments
Leave a comment