Answer to Question #156318 in Discrete Mathematics for Jason

Question #156318

Simplify the following expressions using laws of logic and put what law of logic did you use or apply.

  1. p v ~(~p --> q)
  2. [(p --> q)^ ~q] --> ~p
  3. [(p v q) ^ (p --> ~r) ^ r ] --> q
  4. (p v ~q) ^ (p v q)
  5. 5. ~[p --> ~(p ^ q)]
1
Expert's answer
2021-01-25T01:43:40-0500

(1) "p \\vee \\sim (\\sim p\\to q)"

"=p \\vee \\sim(p\\vee q)" Implication

"=p\\vee (\\sim p \\wedge \\sim q)" De- Morgan's law

"=(p \\vee \\sim p)\\wedge(p \\vee \\sim q)" Distributive law

"=1 \\wedge(p\\vee \\sim q)" Known tautology

"=(p \\vee \\sim q)" Dominance

"=(\\sim q \\vee p)" Commutative

"=q\\to p" Implication


(2)"[(p \\to q) \\wedge \\sim q]\\to \\sim p"

"=\\sim[(p \\to q) \\wedge \\sim q] \\vee \\sim p" Implication

"=\\sim[(\\sim p \\vee q) \\wedge \\sim q] \\vee \\sim p" Implication

"=\\sim[(\\sim p \\wedge \\sim q) \\vee (q \\wedge \\sim q)]\\vee \\sim p" Distributive

"=" "\\sim [(\\sim p \\wedge \\sim q)\\vee 0]\\vee \\sim p" Known contradiction

"=\\sim [(\\sim p \\wedge \\sim q)] \\vee \\sim p" Dominance

"=(p\\vee q) \\vee \\sim p" De Morgan's Law

"=(p\\vee \\sim p) \\vee q" Associativity

"= 1\\vee q" Known tautology

"=1" Dominance


(3)"[(p \\vee q)\\wedge (p \\to \\sim r) \\wedge r] \\to q"

"=[(p\\vee q)\\wedge ( \\sim p \\vee \\sim r)\\wedge r]\\to q" Implication

"=[(p \\vee q) \\wedge (\\sim p \\wedge r) \\vee ( \\sim r \\wedge r)]\\to q" Distributive

"=[(p \\vee q) \\wedge(\\sim p \\wedge r) \\vee 0]\\to q" Known contradiction

"=[(p \\vee q] \\wedge (\\sim p \\wedge r)]\\to q" Dominance

"=\\sim[(p \\vee q) \\wedge (\\sim p \\wedge r)] \\to q" Implication

"=\\sim(p \\vee q) \\vee \\sim (\\sim p \\wedge r) \\vee q" De Morgan

"=\\sim (p \\vee q) \\vee (p \\vee \\sim r) \\vee q" De Morgan

"=\\sim(p \\vee q) \\vee (p\\vee q)\\vee \\sim r" Associativity

"=1 \\vee \\sim r" Known tautology

"=1" Dominance


(4)"(p \\vee \\sim q)\\wedge (p \\vee q)"

"=p \\vee (\\sim q \\wedge q)" Distributive law

"=p \\vee 0" Known contradiction

"=p" Dominance


(5)"\\sim[p \\to \\sim (p \\wedge q)]"

"=\\sim[\\sim p\\vee \\sim(p \\wedge q)]" Implication

"=p \\wedge(p \\wedge q)" De Morgan's Law

"=(p \\wedge p) \\wedge q" Associative

"=p \\wedge q" Idempotent


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS