Question #156785

Simplify the following expressions using laws of logic:

  1. p v ~(~p --> q)
  2. [(p --> q)^ ~q] --> ~p
  3. [(p v q) ^ (p --> ~r) ^ r ] --> q
  4. (p v ~q) ^ (p v q)

 5. ~[p --> ~(p ^ q)]




1
Expert's answer
2021-01-21T14:16:00-0500

Let us simplify the following expressions using laws of logic:


1.p(pq)=p(pq)=p(pq)=(pp)(pq)=T(pq)=pqp \lor \sim(\sim p \to q)=p \lor \sim( p \lor q)=p \lor (\sim p \land\sim q)= (p \lor \sim p) \land (p \lor \sim q)=T \land (p \lor \sim q)=p \lor \sim q


2.[(pq)q]p=[(pq)q]p=(pq)qp=(pq)qp=(pqp)(qqp)=(qT)(Tp)=TT=T[(p \to q)\land \sim q] \to \sim p= \sim[(\sim p \lor q)\land \sim q] \lor \sim p= \sim(\sim p \lor q)\lor q \lor \sim p= ( p \land\sim q)\lor q \lor \sim p= ( p \lor q \lor \sim p) \land(\sim q \lor q \lor \sim p)= ( q \lor T) \land(T \lor \sim p)=T\land T=T


3. [(pq)(pr)r]q=[(pq)(pr)r]q=[(pq)((pr)(rr))]q=[(pq)((pr)F)]q=[(pq)(pr)]q=[(ppr)(qpr)]q=[(Fr)(qpr)]q=[F(qpr)]q=qprq=(qpr)q=qprq=Tpr=T[(p \lor q) \land (p \to \sim r) \land r ]\to q= [(p \lor q) \land (\sim p \lor \sim r) \land r ]\to q= [(p \lor q) \land ((\sim p\land r) \lor (\sim r \land r) )]\to q= [(p \lor q) \land( (\sim p\land r) \lor F) ]\to q= [(p \lor q) \land (\sim p\land r) ]\to q= [(p \land \sim p\land r)\lor (q\land \sim p\land r) ]\to q= [(F \land r)\lor (q\land \sim p\land r) ]\to q= [F \lor (q\land \sim p\land r) ]\to q= q\land \sim p\land r\to q= \sim(q\land \sim p\land r)\lor q= \sim q\lor p\lor \sim r\lor q=T\lor p\lor \sim r=T


4. (pq)(pq)=p(qq)=pF=p(p \lor \sim q) \land (p \lor q)= p \lor (\sim q\land q)=p\lor F=p


 5. [p(pq)]=[p(pq)]=p(pq)=(pp)q=pq\sim[p\to \sim(p \land q)]= \sim[\sim p\lor \sim(p \land q)]= p\land(p \land q)=(p\land p) \land q=p\land q





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS