Answer to Question #136983 in Discrete Mathematics for Rakibul

Question #136983
The recursive definition of a function X is given as:
f(0)=5 and f(n)=f(n-2)+5
Now, find out the value of f(14) using the above function.
1
Expert's answer
2020-10-07T16:34:38-0400

There is the mistake in the question. We don't know f(n2),n=1.f(n-2), n=1.

I think that the correct question is as follows:

The recursive definition of a function X is given as:

f(0)=5 and f(n)=f(n-1)+5

Now, find out the value of f(14) using the above function.


f(0)=5f(0)=5

f(n)=f(n1)+5,n1f(n)=f(n-1)+5, n\geq1

f(1)=f(0)+5=5+5=10=5+5(1)f(1)=f(0)+5=5+5=10=5+5(1)

f(2)=f(1)+5=10+5=15=5+5(2)f(2)=f(1)+5=10+5=15=5+5(2)

f(3)=f(2)+5=15+5=20=5+5(3)f(3)=f(2)+5=15+5=20=5+5(3)

f(4)=f(3)+5=20+5=25=5+5(4)f(4)=f(3)+5=20+5=25=5+5(4)

f(5)=f(4)+5=25+5=30=5+5(5)f(5)=f(4)+5=25+5=30=5+5(5)

f(6)=f(5)+5=30+5=35=5+5(6)f(6)=f(5)+5=30+5=35=5+5(6)

f(7)=f(6)+5=35+5=40=5+5(7)f(7)=f(6)+5=35+5=40=5+5(7)

f(8)=f(7)+5=40+5=45=5+5(8)f(8)=f(7)+5=40+5=45=5+5(8)

f(9)=f(8)+5=45+5=50=5+5(9)f(9)=f(8)+5=45+5=50=5+5(9)

f(10)=f(9)+5=50+5=55=5+5(10)f(10)=f(9)+5=50+5=55=5+5(10)

f(11)=f(10)+5=55+5=60=5+5(11)f(11)=f(10)+5=55+5=60=5+5(11)

f(12)=f(11)+5=60+5=65=5+5(12)f(12)=f(11)+5=60+5=65=5+5(12)

f(13)=f(12)+5=65+5=70=5+5(13)f(13)=f(12)+5=65+5=70=5+5(13)

f(14)=f(13)+5=70+5=75=5+5(14)f(14)=f(13)+5=70+5=75=5+5(14)


f(14)=75f(14)=75


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment