There is the mistake in the question. We don't know f(n−2),n=1.
I think that the correct question is as follows:
The recursive definition of a function X is given as:
f(0)=5 and f(n)=f(n-1)+5
Now, find out the value of f(14) using the above function.
f(0)=5
f(n)=f(n−1)+5,n≥1
f(1)=f(0)+5=5+5=10=5+5(1)
f(2)=f(1)+5=10+5=15=5+5(2)
f(3)=f(2)+5=15+5=20=5+5(3)
f(4)=f(3)+5=20+5=25=5+5(4)
f(5)=f(4)+5=25+5=30=5+5(5)
f(6)=f(5)+5=30+5=35=5+5(6)
f(7)=f(6)+5=35+5=40=5+5(7)
f(8)=f(7)+5=40+5=45=5+5(8)
f(9)=f(8)+5=45+5=50=5+5(9)
f(10)=f(9)+5=50+5=55=5+5(10)
f(11)=f(10)+5=55+5=60=5+5(11)
f(12)=f(11)+5=60+5=65=5+5(12)
f(13)=f(12)+5=65+5=70=5+5(13)
f(14)=f(13)+5=70+5=75=5+5(14)
f(14)=75
Comments
Leave a comment