"\\mathbf{Given:\\;n|m\\;where\\;n\\;and \\;m\\;are\\;integers\\;greater\\;than\\;1,and}"
"\\mathbf{a\\equiv b(mod\\;m),\\;where\\;a\\;and\\;b\\;are\\;integers.}"
"\\mathbf{To\\;show: a\\equiv b(mod\\;n)}"
"\\mathbf{Proof:\\;Since\\;n|m,i.e,\\;n\\;divides\\;m,we\\;have-}"
"\\mathbf{\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;m=n\\alpha,where\\;\\alpha\\;is\\;an\\;integer.\\;\\;\\;\\;................(A)}"
"\\mathbf{Also\\;a\\equiv b(mod\\;m) \\implies m\\;divides\\;(a-b)\\implies m|(a-b)}"
"\\mathbf{\\;\\;\\;\\implies a-b=m\\lambda,where\\;\\lambda\\;is\\;an\\;integer.\\;\\;\\;................(B)}"
"\\mathbf{Substitute\\;m=n\\alpha\\;in\\;equation\\;(B),we\\;get-}"
"\\mathbf{a-b=(n\\alpha)\\lambda}"
"\\implies\\mathbf{a-b=n(\\alpha\\lambda)\\;\\;\\;\\;\\;(\\because Multiplication\\;is\\;associative.)}"
"\\implies \\mathbf{n\\;divides\\;a-b}"
"\\implies \\mathbf{n|(a-b)}"
"\\implies \\mathbf{a-b\\equiv0(mod\\;n)}"
"\\implies \\mathbf{a\\equiv b(mod\\;n)}"
"\\mathbf{Hence\\;the\\;result.}"
Comments
Leave a comment