Question #117757
Let A,B,C be subsets of a set. Prove that A ∩ B ⊆ C iff A⊆B' U C
1
Expert's answer
2020-05-24T21:02:22-0400

Suppose that ABCA\cap B\subseteq C

A=AU=A(BB)=(AB)(AB)A=A\cap U=A\cap (B\cup B’)=(A\cap B)\cup (A\cap B’)

We know that ABCA\cap B\subseteq C and ABBA\cap B’\subseteq B’ .

It implies that A=(AB)(AB)BCA=(A\cap B)\cup (A\cap B’)\subseteq B’\cup C .

So, ABC.A\subseteq B’\cup C.


Now suppose that ABCA\subseteq B’\cup C , (if xA, then xBC)x ∈ A \text{, then}\ x ∈ B ’ ∪ C )

If xAB,x\in A\cap B, then xBCx\in B’\cup C and xBx\in B .

So, x(BC)B=(BB)(CB)=CBCx\in (B’\cup C)\cap B=(B’\cap B)\cup (C\cap B)=C\cap B\subseteq C .

Therefore, ABC.A\cap B\subseteq C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS