Suppose that "A\\cap B\\subseteq C"
"A=A\\cap U=A\\cap (B\\cup B\u2019)=(A\\cap B)\\cup (A\\cap B\u2019)"
We know that "A\\cap B\\subseteq C" and "A\\cap B\u2019\\subseteq B\u2019" .
It implies that "A=(A\\cap B)\\cup (A\\cap B\u2019)\\subseteq B\u2019\\cup C" .
So, "A\\subseteq B\u2019\\cup C."
Now suppose that "A\\subseteq B\u2019\\cup C" , (if "x\n\u2208\nA\n \n\\text{, then}\\ \n \nx\n\u2208\nB\n\u2019\n\u222a\nC\n)"
If "x\\in A\\cap B," then "x\\in B\u2019\\cup C" and "x\\in B" .
So, "x\\in (B\u2019\\cup C)\\cap B=(B\u2019\\cap B)\\cup (C\\cap B)=C\\cap B\\subseteq C" .
Therefore, "A\\cap B\\subseteq C."
Comments
Leave a comment