Answer to Question #117757 in Discrete Mathematics for rohit

Question #117757
Let A,B,C be subsets of a set. Prove that A ∩ B ⊆ C iff A⊆B' U C
1
Expert's answer
2020-05-24T21:02:22-0400

Suppose that "A\\cap B\\subseteq C"

"A=A\\cap U=A\\cap (B\\cup B\u2019)=(A\\cap B)\\cup (A\\cap B\u2019)"

We know that "A\\cap B\\subseteq C" and "A\\cap B\u2019\\subseteq B\u2019" .

It implies that "A=(A\\cap B)\\cup (A\\cap B\u2019)\\subseteq B\u2019\\cup C" .

So, "A\\subseteq B\u2019\\cup C."


Now suppose that "A\\subseteq B\u2019\\cup C" , (if "x\n\u2208\nA\n \n\\text{, then}\\ \n \nx\n\u2208\nB\n\u2019\n\u222a\nC\n)"

If "x\\in A\\cap B," then "x\\in B\u2019\\cup C" and "x\\in B" .

So, "x\\in (B\u2019\\cup C)\\cap B=(B\u2019\\cap B)\\cup (C\\cap B)=C\\cap B\\subseteq C" .

Therefore, "A\\cap B\\subseteq C."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS