Suppose that A∩B⊆C
A=A∩U=A∩(B∪B’)=(A∩B)∪(A∩B’)
We know that A∩B⊆C and A∩B’⊆B’ .
It implies that A=(A∩B)∪(A∩B’)⊆B’∪C .
So, A⊆B’∪C.
Now suppose that A⊆B’∪C , (if x∈A, then x∈B’∪C)
If x∈A∩B, then x∈B’∪C and x∈B .
So, x∈(B’∪C)∩B=(B’∩B)∪(C∩B)=C∩B⊆C .
Therefore, A∩B⊆C.
Comments