Question #117513
Solve the recurrence relation a_n-4a_n-1+5a_n-2-2a_n-3=1+2^n
1
Expert's answer
2020-05-24T15:55:11-0400

an4an1+5an22an3=1+2na_n-4a_{n-1}+5a_{n-2}-2a_{n-3}=1+2^n

an=4an15an2+2an3+(1+2n)a_n=4a_{n-1}-5a_{n-2}+2a_{n-3}+(1+2^n)


Characteristic equation: r34r2+5r2=(r1)2(r2)=0,  r1=1,r2=2r^3-4r^2+5r-2=(r-1)^2(r-2)=0, \ \ r_1=1, r_2=2

Then an(0)=(c1+c2n)r1n+c3r2n=c1+c2n+c32na^{(0)}_n=(c_1+c_2n)r_1^n+c_3r_2^n=c_1+c_2n+c_32^n is a solution of an=4an15an2+2an3a_n=4a_{n-1}-5a_{n-2}+2a_{n-3}


We need do find particular solution of an=4an15an2+2an3+F(n),  F(n)=(1+2n)a_n=4a_{n-1}-5a_{n-2}+2a_{n-3}+F(n), \ \ F(n)=(1+2^n)

1 and 2 are characteristic roots of multiplicity 2 and 1 respectively.

Then particular solution has form of an(p)=n2(btnt+bt1nt1+...+b1n+b0)1n+n(dknk+dk1nk1+...+d1n+d0)2na^{(p)}_n=n^2(b_tn^t+b_{t-1}n_{t-1}+...+b_1n+b_0)1^n+ n(d_kn^k+d_{k-1}n_{k-1}+...+d_1n+d_0)2^n

Suppose that an(p)=n2b0×1n+nd02n=b0n2+d0n2na^{(p)}_n=n^2 b_0\times 1^n+nd_02^n=b_0n^2+d_0n2^n and substitute it:

b0n2+d0n2n=4(b0(n1)2+d0(n1)2n1)5(b0(n2)2+d0(n2)2n2)+2(b0(n3)2+d0(n3)2n3)+1+2n=b0(n2+2)+d0n2nd02n2+1+2nb_0n^2+d_0n2^n=4(b_0(n-1)^2+d_0(n-1)2^{n-1})-5(b_0(n-2)^2+d_0(n-2)2^{n-2})+2(b_0(n-3)^2+d_0(n-3)2^{n-3})+1+2^n=b_0(n^2+2)+d_0n2^n-d_02^{n-2}+1+2^n


b0n2+d0n2n=b0(n2+2)+d0n2nd02n2+1+2nb_0n^2+d_0n2^n=b_0(n^2+2)+d_0n2^n-d_02^{n-2}+1+2^n

(2b0+1)+(2nd02n2)=0,  nN(2b_0+1)+(2^n-d_02^{n-2})=0, \ \ \forall n\in\mathbb{N}

b0=1/2,  d0=4b_0=-1/2, \ \ d_0=4

Solution of the recurrence relation is sum of an(0)a^{(0)}_n and an(p)a^{(p)}_n .

We have the following solution of the recurrence relation:

an=c1+c2n+c32n1/2n2+n2n+2a_n=c_1+c_2n+c_32^n-1/2n^2+n2^{n+2} .



Answer: an=c1+c2n+c32n1/2n2+n2n+2.a_n=c_1+c_2n+c_32^n-1/2n^2+n2^{n+2}.


The following source is used:

https://courses.ics.hawaii.edu/ReviewICS241/morea/counting/RecurrenceRelations2-QA.pdf

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS