By the Vieta's formulas we have "-\\frac{b}{a}=(\\alpha-\\beta)+\\alpha+(\\alpha+\\beta)=3\\alpha", "\\frac{c}{a}=(\\alpha-\\beta)\\alpha+(\\alpha-\\beta)(\\alpha+\\beta)+\\alpha(\\alpha+\\beta)="
"=\\alpha^2-\\alpha\\beta+\\alpha^2-\\beta^2+\\alpha^2+\\alpha\\beta=3\\alpha^2-\\beta^2", "-\\frac{d}{a}=(\\alpha-\\beta)\\alpha(\\alpha+\\beta)=\\alpha^3-\\alpha\\beta^2"
Then "(2b^2-9ac)b+27a^2d=a^3\\left(2\\left(\\frac{b}{a}\\right)^2-9\\frac{c}{a}\\right)\\frac{b}{a}+27a^3\\frac{d}{a}"
So we need to prove that "\\left(2\\left(\\frac{b}{a}\\right)^2-9\\frac{c}{a}\\right)\\frac{b}{a}+27\\frac{d}{a}=0"
We have "2\\left(\\frac{b}{a}\\right)^2-9\\frac{c}{a}=2(3\\alpha)^2-9(3\\alpha^2-\\beta^2)=-9\\alpha^2+9\\beta^2", so "\\left(2\\left(\\frac{b}{a}\\right)^2-9\\frac{c}{a}\\right)\\frac{b}{a}+27\\frac{d}{a}="
"=(-9\\alpha^2+9\\beta^2)(-3\\alpha)+27(-\\alpha^3+\\alpha\\beta^2)=0"
Comments
Leave a comment