Question #117221
4. If the roots of the cubic az3 + bz2 + cz + d = 0 form an arithmetic progression α − β,
α, α + β, prove that (2b
2 − 9ac)b + 27a
2d = 0.
1
Expert's answer
2020-05-20T19:05:52-0400

By the Vieta's formulas we have ba=(αβ)+α+(α+β)=3α-\frac{b}{a}=(\alpha-\beta)+\alpha+(\alpha+\beta)=3\alpha, ca=(αβ)α+(αβ)(α+β)+α(α+β)=\frac{c}{a}=(\alpha-\beta)\alpha+(\alpha-\beta)(\alpha+\beta)+\alpha(\alpha+\beta)=

=α2αβ+α2β2+α2+αβ=3α2β2=\alpha^2-\alpha\beta+\alpha^2-\beta^2+\alpha^2+\alpha\beta=3\alpha^2-\beta^2, da=(αβ)α(α+β)=α3αβ2-\frac{d}{a}=(\alpha-\beta)\alpha(\alpha+\beta)=\alpha^3-\alpha\beta^2

Then (2b29ac)b+27a2d=a3(2(ba)29ca)ba+27a3da(2b^2-9ac)b+27a^2d=a^3\left(2\left(\frac{b}{a}\right)^2-9\frac{c}{a}\right)\frac{b}{a}+27a^3\frac{d}{a}

So we need to prove that (2(ba)29ca)ba+27da=0\left(2\left(\frac{b}{a}\right)^2-9\frac{c}{a}\right)\frac{b}{a}+27\frac{d}{a}=0

We have 2(ba)29ca=2(3α)29(3α2β2)=9α2+9β22\left(\frac{b}{a}\right)^2-9\frac{c}{a}=2(3\alpha)^2-9(3\alpha^2-\beta^2)=-9\alpha^2+9\beta^2, so (2(ba)29ca)ba+27da=\left(2\left(\frac{b}{a}\right)^2-9\frac{c}{a}\right)\frac{b}{a}+27\frac{d}{a}=

=(9α2+9β2)(3α)+27(α3+αβ2)=0=(-9\alpha^2+9\beta^2)(-3\alpha)+27(-\alpha^3+\alpha\beta^2)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS