Answer to Question #117221 in Discrete Mathematics for Samuel

Question #117221
4. If the roots of the cubic az3 + bz2 + cz + d = 0 form an arithmetic progression α − β,
α, α + β, prove that (2b
2 − 9ac)b + 27a
2d = 0.
1
Expert's answer
2020-05-20T19:05:52-0400

By the Vieta's formulas we have "-\\frac{b}{a}=(\\alpha-\\beta)+\\alpha+(\\alpha+\\beta)=3\\alpha", "\\frac{c}{a}=(\\alpha-\\beta)\\alpha+(\\alpha-\\beta)(\\alpha+\\beta)+\\alpha(\\alpha+\\beta)="

"=\\alpha^2-\\alpha\\beta+\\alpha^2-\\beta^2+\\alpha^2+\\alpha\\beta=3\\alpha^2-\\beta^2", "-\\frac{d}{a}=(\\alpha-\\beta)\\alpha(\\alpha+\\beta)=\\alpha^3-\\alpha\\beta^2"

Then "(2b^2-9ac)b+27a^2d=a^3\\left(2\\left(\\frac{b}{a}\\right)^2-9\\frac{c}{a}\\right)\\frac{b}{a}+27a^3\\frac{d}{a}"

So we need to prove that "\\left(2\\left(\\frac{b}{a}\\right)^2-9\\frac{c}{a}\\right)\\frac{b}{a}+27\\frac{d}{a}=0"

We have "2\\left(\\frac{b}{a}\\right)^2-9\\frac{c}{a}=2(3\\alpha)^2-9(3\\alpha^2-\\beta^2)=-9\\alpha^2+9\\beta^2", so "\\left(2\\left(\\frac{b}{a}\\right)^2-9\\frac{c}{a}\\right)\\frac{b}{a}+27\\frac{d}{a}="

"=(-9\\alpha^2+9\\beta^2)(-3\\alpha)+27(-\\alpha^3+\\alpha\\beta^2)=0"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS