We use the theory of inclusion and exclusion here.
Let "A,B,C" denote the events of writing the Mathematics, Psychology and Science Exams respectively.
Let "U" denote the universal set, so "N(U)=100" .
Now, we have the following information:
"N(A)=56\\\\\n\nN(B)=23\\\\\n\nN(C)=21\\\\\n\nN(A\\cap B)=12\\\\\n\nN(A\\cap C)=9\\\\\n\nN(B\\cap C)=6\\\\\n\nN(\\bar{A}\\cap\\bar{B}\\cap\\bar{C})=5"
From the last one, using the fact that "\\bar{A}\\cap\\bar{B}\\cap\\bar{C}=(A\\cup B\\cup C)^C" , we have "N(A\\cup B\\cup C)=95"
We need "N(A\\cap B\\cap C)"
Using inclusion-exclusion principle, we have
"N(A\\cup B\\cup C)=N(A)+N(B)+N(C)\\\\\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;-N(A\\cap B)-N(A\\cap C)-N(B\\cap C)\\\\\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;+N(A\\cap B\\cap C)\\\\\n\\implies N(A\\cap B\\cap C)=N(A\\cup B\\cup C)-(N(A)+N(B)+N(C))-(-N(A\\cap B)-N(A\\cap C)-N(B\\cap C))\\\\\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\\\\n=95-56-23-21+12+9+6=22"
Comments
Leave a comment