34. (P ∧ Q) ∨ P with (P ∨ Q) ∧ Q
(P ∧ Q) ∨ P (P ∨ Q) ∧ Q
T T (T ∧ T) ∨ T (T ∨ T) ∧ T
T F (T ∧ F) ∨ T (T ∨ F) ∧ F
F T (F ∧ T) ∨ F (F ∨ T) ∧ T
F F (F ∧ F) ∨ F (F ∨ F) ∧ F
(P ∧ Q) ∨ P (P ∨ Q) ∧ Q
T T T ∨ T T ∧ T
T F F ∨ T T ∧ F
F T F ∨ F T ∧ T
F F F ∨ F F ∧ F
(P ∧ Q) ∨ P (P ∨ Q) ∧ Q
T T T T
T F T F
F T F T
F F F F
The statements are not equivalent and are contradictory. The statements are consistent since they are both true for P=Q=T.
35. [(S → W) → X] with [(S ∧ W) ∨ (W ∧ X)]
S W X [(S → W) → X] [(S ∧ W) ∨ (W ∧ X)]
T T T [(T → T) → T] [(T ∧ T) ∨ (T ∧ T)]
T T F [(T → T) → F] [(T ∧ T) ∨ (T ∧ F)]
T F T [(T → F) → T] [(T ∧ F) ∨ (F ∧ T)]
F T T [(F → T) → T] [(F ∧ T) ∨ (T ∧ T)]
T F F [(T → F) → F] [(T ∧ F) ∨ (F ∧ F)]
F T F [(F → T) → F] [(F ∧ T) ∨ (T ∧ F)]
F F T [(F → F) → T] [(F ∧ F) ∨ (F ∧ T)]
F F F [(F → F) → F] [(F ∧ F) ∨ (F ∧ F)]
S W X [(S → W) → X] [(S ∧ W) ∨ (W ∧ X)]
T T T [T → T] [T ∨ T]
T T F [T → F] [T ∨ F]
T F T [F → T] [F ∨ F]
F T T [T → T] [F ∨ T]
T F F [F → F] [F ∨ F]
F T F [T → F] [F ∨ F]
F F T [T → T] [F ∨ F]
F F F [T → F] [F ∨ F]
S W X [(S → W) → X] [(S ∧ W) ∨ (W ∧ X)]
T T T T T
T T F F T
T F T T F
F T T T T
T F F T F
F T F F F
F F T T F
F F F F F
The statements are not equivalent and are contradictory. The statements are consistent since they are both true for S=W=X=T and for S=F, W=X=T.
Comments
Leave a comment