y=k=0∑∞Akxk+r
y′=k=0∑∞Ak(k+r)xk+r−1
y′′=k=0∑∞Ak(k+r)(k+r−1)xk+r−2
x2k=0∑∞Ak(k+r)(k+r−1)xk+r−2+
(4x−x2)k=0∑∞Ak(k+r)xk+r−1+
(2−x)k=0∑∞Akxk+r=
k=0∑∞(Ak(k+r)(k+r−1)+4Ak(k+r)+2Ak)xk+r−
−k=0∑∞Ak(k+r+1)xk+r+1=
k=0∑∞Ak((k+r)(k+r−1)+4(k+r)+2)xk+r−
−k=1∑∞Ak−1(k+r)xk+r=
[(k+r)(k+r−1)+4(k+r)+2=
k2+2kr+r2−k−r+4(k+r)+2=
(k+r)2+3(k+r)+2=(k+r+1)(k+r+2)]
A0(r+1)(r+2)xr+k=1∑∞(Ak(k+r+1)(k+r+2)−Ak−1(k+r))xk+r
indicial polynom:
(r+1)(r+2)=0,r1=−1,r2=−2
Ak(k+r+1)(k+r+2)−Ak−1(k+r)=0
Ak(k+r+1)(k+r+2)=Ak−1(k+r)case1:k=1,r=−2
A1(1−2+1)(1−2+2)=A0(1−2)
A0=0,Ak=0;y=0
case2:k=1,r=−1
A1(1−1+1)(1−1+2)=A0(1−1)=0
A0=0,A1=0,A2=0,...
y=xA0;y=x0=0,whenA0=0. Answer: y=A0/x, A0 is real number.
Comments