Question #90006
Solving this following ODE by Frobenius Method
X^2y’’+(4x-x^2)y’+(2-x)y=0 full solution step-by-step
1
Expert's answer
2019-05-22T09:06:39-0400


y=k=0Akxk+ry=\sum_{k=0}^\infty A_k x^{k+r}

y=k=0Ak(k+r)xk+r1y'=\sum_{k=0}^\infty A_k(k+r) x^{k+r-1}

y=k=0Ak(k+r)(k+r1)xk+r2y''=\sum_{k=0}^\infty A_k (k+r)(k+r-1)x^{k+r-2}

x2k=0Ak(k+r)(k+r1)xk+r2+x^2\sum_{k=0}^\infty A_k (k+r)(k+r-1)x^{k+r-2}+

(4xx2)k=0Ak(k+r)xk+r1+(4x-x^2)\sum_{k=0}^\infty A_k(k+r) x^{k+r-1}+

(2x)k=0Akxk+r=(2-x)\sum_{k=0}^\infty A_k x^{k+r}=

k=0(Ak(k+r)(k+r1)+4Ak(k+r)+2Ak)xk+r\sum_{k=0}^\infty (A_k (k+r)(k+r-1)+4A_k(k+r)+2A_k)x^{k+r}-

k=0Ak(k+r+1)xk+r+1=-\sum_{k=0}^\infty A_k(k+r+1)x^{k+r+1}=

k=0Ak((k+r)(k+r1)+4(k+r)+2)xk+r\sum_{k=0}^\infty A_k((k+r)(k+r-1)+4(k+r)+2)x^{k+r}-


k=1Ak1(k+r)xk+r=-\sum_{k=1}^\infty A_{k-1}(k+r)x^{k+r}=

[(k+r)(k+r1)+4(k+r)+2=[(k+r)(k+r-1)+4(k+r)+2=

k2+2kr+r2kr+4(k+r)+2=k^2+2kr+r^2-k-r+4(k+r)+2=

(k+r)2+3(k+r)+2=(k+r+1)(k+r+2)](k+r)^2+3(k+r)+2=(k+r+1)(k+r+2) ]

A0(r+1)(r+2)xr+k=1(Ak(k+r+1)(k+r+2)Ak1(k+r))xk+rA_0(r+1)(r+2)x^r+\sum_{k=1}^\infty(A_k(k+r+1)(k+r+2)-A_{k-1}(k+r))x^{k+r}

indicial polynom:

(r+1)(r+2)=0,r1=1,r2=2(r+1)(r+2)=0,r_1=-1,r_2=-2

Ak(k+r+1)(k+r+2)Ak1(k+r)=0A_k(k+r+1)(k+r+2)-A_{k-1}(k+r)=0

Ak(k+r+1)(k+r+2)=Ak1(k+r)A_k(k+r+1)(k+r+2)=A_{k-1}(k+r)case1:k=1,r=2case 1: k=1,r=-2

A1(12+1)(12+2)=A0(12)A_1(1-2+1)(1-2+2)=A_0(1-2)

A0=0,Ak=0;A_0=0,A_k=0;y=0y = 0


case2:k=1,r=1case 2: k=1,r=-1

A1(11+1)(11+2)=A0(11)=0A_1(1-1+1)(1-1+2)=A_0(1-1) = 0

A00,A1=0,A2=0,...A_0\not = 0 , A_1=0,A_2=0,...

y=A0x;y=0x=0,whenA0=0.y=\frac{A_0}{x}; y = \frac{0}{x}=0, when A_0=0.

Answer: y=A0/x, A0 is real number.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS