x 2 y ′ ′ + ( 4 x − x 2 ) y ′ + ( 2 − x ) y = 0 ( 1 ) x^2y''+(4x-x^2)y'+(2-x)y=0 \ \ \ \ \ \ \ \ \ (1) x 2 y ′′ + ( 4 x − x 2 ) y ′ + ( 2 − x ) y = 0 ( 1 ) Dividing by x 2 x^2 x 2
y ′ ′ + 4 x − x 2 x 2 y ′ + 2 − x x 2 y = 0 y''+{4x-x^2 \over x^2}y'+{2-x\over x^2}y=0 y ′′ + x 2 4 x − x 2 y ′ + x 2 2 − x y = 0 x P ( x ) = 4 − x , x 2 Q ( x ) = 2 − x xP(x)=4-x, x^2Q(x)=2-x x P ( x ) = 4 − x , x 2 Q ( x ) = 2 − x Both P ( x ) P(x) P ( x ) and Q ( x ) Q(x) Q ( x ) are analytic at x = 0. x=0. x = 0. A singular point x = 0 x=0 x = 0 is a regular singular point of the equation (1). Then we can find at least one solution to a second order differential equation by assuming a solution of the form:
y = ∑ n = 0 ∞ a n x n + r , a 0 ≠ 0 y=\displaystyle\sum_{n=0}^\infin a_nx^{n+r}, a_0\not =0 y = n = 0 ∑ ∞ a n x n + r , a 0 = 0 y ′ = ∑ n = 0 ∞ a n ( n + r ) x n + r − 1 y'=\displaystyle\sum_{n=0}^\infin a_n(n+r)x^{n+r-1} y ′ = n = 0 ∑ ∞ a n ( n + r ) x n + r − 1 y ′ ′ = ∑ n = 0 ∞ a n ( n + r ) ( n + r − 1 ) x n + r − 2 y''=\displaystyle\sum_{n=0}^\infin a_n(n+r)(n+r-1)x^{n+r-2} y ′′ = n = 0 ∑ ∞ a n ( n + r ) ( n + r − 1 ) x n + r − 2 Substitute
x 2 ∑ n = 0 ∞ a n ( n + r ) ( n + r − 1 ) x n + r − 2 + ( 4 x − x 2 ) ∑ n = 0 ∞ a n ( n + r ) x n + r − 1 + x^2 \displaystyle\sum_{n=0}^\infin a_n(n+r)(n+r-1)x^{n+r-2}+(4x-x^2)\displaystyle\sum_{n=0}^\infin a_n(n+r)x^{n+r-1}+ x 2 n = 0 ∑ ∞ a n ( n + r ) ( n + r − 1 ) x n + r − 2 + ( 4 x − x 2 ) n = 0 ∑ ∞ a n ( n + r ) x n + r − 1 + + ( 2 − x ) ∑ n = 0 ∞ a n x n + r = 0 +(2-x)\displaystyle\sum_{n=0}^\infin a_nx^{n+r}=0 + ( 2 − x ) n = 0 ∑ ∞ a n x n + r = 0 Or
∑ n = 0 ∞ a n ( n + r ) ( n + r − 1 ) x n + r + ∑ n = 0 ∞ a n [ 4 ( n + r ) + 2 ] x n + r + \displaystyle\sum_{n=0}^\infin a_n(n+r)(n+r-1)x^{n+r}+\displaystyle\sum_{n=0}^\infin a_n[4(n+r)+2]x^{n+r}+ n = 0 ∑ ∞ a n ( n + r ) ( n + r − 1 ) x n + r + n = 0 ∑ ∞ a n [ 4 ( n + r ) + 2 ] x n + r + + ∑ n = 1 ∞ a n − 1 ( − n − r ) x n + r = 0 +\displaystyle\sum_{n=1}^\infin a_{n-1}(-n-r)x^{n+r}=0 + n = 1 ∑ ∞ a n − 1 ( − n − r ) x n + r = 0
a 0 r ( r − 1 ) x r + a 0 ( 4 r + 2 ) x r = 0 a_0r(r-1)x^r+a_0(4r+2)x^r=0 a 0 r ( r − 1 ) x r + a 0 ( 4 r + 2 ) x r = 0 ( r + 2 ) ( r + 1 ) = 0 (r+2)(r+1)=0 ( r + 2 ) ( r + 1 ) = 0 r 1 = − 2 , r 2 = − 1 r_1=-2, r_2=-1 r 1 = − 2 , r 2 = − 1
a 1 ( 1 + r ) r x r + 1 + a 1 ( 4 ( 1 + r ) + 2 ) x r + 1 + a 0 ( − 1 − r ) x 1 + r = 0 a_1(1+r)rx^{r+1}+a_1(4(1+r)+2)x^{r+1}+a_0(-1-r)x^{1+r}=0 a 1 ( 1 + r ) r x r + 1 + a 1 ( 4 ( 1 + r ) + 2 ) x r + 1 + a 0 ( − 1 − r ) x 1 + r = 0 a 1 ( r + 2 ) ( r + 3 ) x r + 1 = a 0 ( 1 + r ) x 1 + r a_1(r+2)(r+3)x^{r+1}=a_0(1+r)x^{1+r} a 1 ( r + 2 ) ( r + 3 ) x r + 1 = a 0 ( 1 + r ) x 1 + r
a 2 ( 2 + r ) ( 1 + r ) x r + 2 + a 2 ( 4 ( 2 + r ) + 2 ) x r + 2 + a 1 ( − 2 − r ) x r + 2 = 0 a_2(2+r)(1+r)x^{r+2}+a_2(4(2+r)+2)x^{r+2}+a_1(-2-r)x^{r+2}=0 a 2 ( 2 + r ) ( 1 + r ) x r + 2 + a 2 ( 4 ( 2 + r ) + 2 ) x r + 2 + a 1 ( − 2 − r ) x r + 2 = 0 a 2 ( r + 3 ) ( r + 4 ) x r + 2 = a 1 ( 2 + r ) x 2 + r a_2(r+3)(r+4)x^{r+2}=a_1(2+r)x^{2+r} a 2 ( r + 3 ) ( r + 4 ) x r + 2 = a 1 ( 2 + r ) x 2 + r
a 3 ( 3 + r ) ( 2 + r ) x r + 3 + a 3 ( 4 ( 3 + r ) + 2 ) x r + 3 + a 2 ( − 3 − r ) x r + 3 = 0 a_3(3+r)(2+r)x^{r+3}+a_3(4(3+r)+2)x^{r+3}+a_2(-3-r)x^{r+3}=0 a 3 ( 3 + r ) ( 2 + r ) x r + 3 + a 3 ( 4 ( 3 + r ) + 2 ) x r + 3 + a 2 ( − 3 − r ) x r + 3 = 0 a 3 ( r + 4 ) ( r + 5 ) x r + 3 = a 2 ( 3 + r ) x 3 + r a_3(r+4)(r+5)x^{r+3}=a_2(3+r)x^{3+r} a 3 ( r + 4 ) ( r + 5 ) x r + 3 = a 2 ( 3 + r ) x 3 + r
a n ( r + n + 1 ) ( r + n + 2 ) x r + n = a n − 1 ( n + r ) x n + r a_n(r+n+1)(r+n+2)x^{r+n}=a_{n-1}(n+r)x^{n+r} a n ( r + n + 1 ) ( r + n + 2 ) x r + n = a n − 1 ( n + r ) x n + r
r 1 = − 2 r_1=-2 r 1 = − 2 a 1 ( − 2 + 2 ) ( − 2 + 3 ) x − 2 + 1 = a 0 ( 1 − 2 ) x 1 − 2 , a 0 = 0 a_1(-2+2)(-2+3)x^{-2+1}=a_0(1-2)x^{1-2}, a_0=0 a 1 ( − 2 + 2 ) ( − 2 + 3 ) x − 2 + 1 = a 0 ( 1 − 2 ) x 1 − 2 , a 0 = 0
r 2 = − 1 r_2=-1 r 2 = − 1
a 1 ( − 1 + 2 ) ( − 1 + 3 ) x − 1 + 1 = a 0 ( 1 − 1 ) x 1 − 1 , a 1 = 0 , a 0 ≠ 0 a_1(-1+2)(-1+3)x^{-1+1}=a_0(1-1)x^{1-1}, a_1=0, a_0\not =0 a 1 ( − 1 + 2 ) ( − 1 + 3 ) x − 1 + 1 = a 0 ( 1 − 1 ) x 1 − 1 , a 1 = 0 , a 0 = 0
a 2 ( − 1 + 3 ) ( − 1 + 4 ) x − 1 + 2 = a 1 ( − 1 + r ) x − 1 + r , a 2 = 0 a_2(-1+3)(-1+4)x^{-1+2}=a_1(-1+r)x^{-1+r}, a_2=0 a 2 ( − 1 + 3 ) ( − 1 + 4 ) x − 1 + 2 = a 1 ( − 1 + r ) x − 1 + r , a 2 = 0
a 2 = a 3 = . . . = a n = . . . = 0 a_2=a_3=...=a_n=...=0 a 2 = a 3 = ... = a n = ... = 0
y 2 ~ = a 0 x 0 − 1 = a 0 x \widetilde{y_2}=a_0x^{0-1}={a_0 \over x} y 2 = a 0 x 0 − 1 = x a 0
y = a 0 x , a 0 ∈ R , a 0 ≠ 0 y={a_0 \over x}, a_0\in \R, a_0\not= 0 y = x a 0 , a 0 ∈ R , a 0 = 0
Comments