Question #89398
Solving this following ODE by Frobenius Method
X^2y’’+(4x-x^2)y’+(2-x)y=0
1
Expert's answer
2019-05-13T03:17:09-0400
x2y+(4xx2)y+(2x)y=0         (1)x^2y''+(4x-x^2)y'+(2-x)y=0 \ \ \ \ \ \ \ \ \ (1)

Dividing by x2x^2


y+4xx2x2y+2xx2y=0y''+{4x-x^2 \over x^2}y'+{2-x\over x^2}y=0xP(x)=4x,x2Q(x)=2xxP(x)=4-x, x^2Q(x)=2-x

Both P(x)P(x) and Q(x)Q(x) are analytic at x=0.x=0. A singular point x=0x=0 is a regular singular point of the equation (1). Then we can find at least one solution to a second order differential equation by assuming a solution of the form: 


y=n=0anxn+r,a00y=\displaystyle\sum_{n=0}^\infin a_nx^{n+r}, a_0\not =0y=n=0an(n+r)xn+r1y'=\displaystyle\sum_{n=0}^\infin a_n(n+r)x^{n+r-1}y=n=0an(n+r)(n+r1)xn+r2y''=\displaystyle\sum_{n=0}^\infin a_n(n+r)(n+r-1)x^{n+r-2}

Substitute


x2n=0an(n+r)(n+r1)xn+r2+(4xx2)n=0an(n+r)xn+r1+x^2 \displaystyle\sum_{n=0}^\infin a_n(n+r)(n+r-1)x^{n+r-2}+(4x-x^2)\displaystyle\sum_{n=0}^\infin a_n(n+r)x^{n+r-1}++(2x)n=0anxn+r=0+(2-x)\displaystyle\sum_{n=0}^\infin a_nx^{n+r}=0

Or


n=0an(n+r)(n+r1)xn+r+n=0an[4(n+r)+2]xn+r+\displaystyle\sum_{n=0}^\infin a_n(n+r)(n+r-1)x^{n+r}+\displaystyle\sum_{n=0}^\infin a_n[4(n+r)+2]x^{n+r}++n=1an1(nr)xn+r=0+\displaystyle\sum_{n=1}^\infin a_{n-1}(-n-r)x^{n+r}=0




a0r(r1)xr+a0(4r+2)xr=0a_0r(r-1)x^r+a_0(4r+2)x^r=0(r+2)(r+1)=0(r+2)(r+1)=0r1=2,r2=1r_1=-2, r_2=-1




a1(1+r)rxr+1+a1(4(1+r)+2)xr+1+a0(1r)x1+r=0a_1(1+r)rx^{r+1}+a_1(4(1+r)+2)x^{r+1}+a_0(-1-r)x^{1+r}=0a1(r+2)(r+3)xr+1=a0(1+r)x1+ra_1(r+2)(r+3)x^{r+1}=a_0(1+r)x^{1+r}

a2(2+r)(1+r)xr+2+a2(4(2+r)+2)xr+2+a1(2r)xr+2=0a_2(2+r)(1+r)x^{r+2}+a_2(4(2+r)+2)x^{r+2}+a_1(-2-r)x^{r+2}=0a2(r+3)(r+4)xr+2=a1(2+r)x2+ra_2(r+3)(r+4)x^{r+2}=a_1(2+r)x^{2+r}


a3(3+r)(2+r)xr+3+a3(4(3+r)+2)xr+3+a2(3r)xr+3=0a_3(3+r)(2+r)x^{r+3}+a_3(4(3+r)+2)x^{r+3}+a_2(-3-r)x^{r+3}=0a3(r+4)(r+5)xr+3=a2(3+r)x3+ra_3(r+4)(r+5)x^{r+3}=a_2(3+r)x^{3+r}


an(r+n+1)(r+n+2)xr+n=an1(n+r)xn+ra_n(r+n+1)(r+n+2)x^{r+n}=a_{n-1}(n+r)x^{n+r}

r1=2r_1=-2a1(2+2)(2+3)x2+1=a0(12)x12,a0=0a_1(-2+2)(-2+3)x^{-2+1}=a_0(1-2)x^{1-2}, a_0=0


r2=1r_2=-1

a1(1+2)(1+3)x1+1=a0(11)x11,a1=0,a00a_1(-1+2)(-1+3)x^{-1+1}=a_0(1-1)x^{1-1}, a_1=0, a_0\not =0

a2(1+3)(1+4)x1+2=a1(1+r)x1+r,a2=0a_2(-1+3)(-1+4)x^{-1+2}=a_1(-1+r)x^{-1+r}, a_2=0


a2=a3=...=an=...=0a_2=a_3=...=a_n=...=0

y2~=a0x01=a0x\widetilde{y_2}=a_0x^{0-1}={a_0 \over x}

y=a0x,a0R,a00y={a_0 \over x}, a_0\in \R, a_0\not= 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS