y′+y=cos(3x)
Consider:
y(x)=u(x)∗v(x)u′v+v′u+uv=cos(3x)uv′+v(u′+u)=cos(3x) then:
dxdu=−uudu=−dx∫udu=−∫dxln(u)=−xu=e−x then:
v′u=cos(3x)v′=cos(3x)∗exv=∫cos(3x)∗ex=101cos(3x)∗ex+103sin(3x)∗ex+C then a particular integral is
y(x)=101cos(3x)+103sin(3x)
Comments