Question #89428
Find the particular integral of dy/dx+y=cos3x
1
Expert's answer
2019-05-15T14:19:53-0400
y+y=cos(3x)y'+y= cos(3x)


Consider:

y(x)=u(x)v(x)uv+vu+uv=cos(3x)uv+v(u+u)=cos(3x)y(x)=u(x)*v(x)\\ u'v+v'u+uv=cos(3x)\\ uv'+v(u'+u)=cos(3x)\\

then:


dudx=uduu=dxduu=dxln(u)=xu=ex\frac{du}{dx}=-u\\ \frac{du}{u}=-dx\\ \int \frac{du}{u}=-\int dx\\ ln(u)=-x \\ u=e^{-x}

then:

vu=cos(3x)v=cos(3x)exv=cos(3x)ex=110cos(3x)ex+310sin(3x)ex+Cv'u=cos(3x)\\ v'=cos(3x)*e^{x}\\ v=\int cos(3x)*e^x=\frac{1}{10}cos(3x)*e^x+\frac{3}{10}sin(3x)*e^x+C\\

then a particular integral is


y(x)=110cos(3x)+310sin(3x)y(x)=\frac{1}{10}cos(3x)+\frac{3}{10}sin(3x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS