dx dt=2x-4y
dx dt=2x+4y
"Dx-2x+4y=0""Dy-2x-4y=0"
"(D-2)x+4y=0""-2x+(D-4)y=0"
Multiply first equation by "2" and second equarion by "D-2"
Add two equations
"+(-2(D-2)x+(D-2)(D-4)y)=0"
Simplify
"D^2-6D+16y=0"Auxiliary equation
"r=3\\pm i\\sqrt{7}"
"y(t)=c_1e^{3t}\\cos(\\sqrt{7}t)+c_2e^{3t}\\sin(\\sqrt{7}t)"
Then
"-\\sqrt{7}c_1e^{3t}\\sin(\\sqrt{7}t)+\\sqrt{7}c_2e^{3t}\\cos(\\sqrt{7}t)"
Substitute
"x=-2y+\\dfrac{1}{2}\\dfrac{dy}{dt}"
"+\\dfrac{3}{2}c_1e^{3t}\\cos(\\sqrt{7}t)+\\dfrac{3}{2}c_2e^{3t}\\sin(\\sqrt{7}t)"
"-\\dfrac{\\sqrt{7}}{2}c_1e^{3t}\\sin(\\sqrt{7}t)+\\dfrac{\\sqrt{7}}{2}c_2e^{3t}\\cos(\\sqrt{7}t)"
"+(-\\dfrac{1}{2}c_2-\\dfrac{\\sqrt{7}}{2}c_1)e^{3t}\\sin(\\sqrt{7}t)"
"y(t)=c_1e^{3t}\\cos(\\sqrt{7}t)+c_2e^{3t}\\sin(\\sqrt{7}t)"
Comments
Leave a comment