dtdx=2x−4ydtdy=2x+4y
Dx−2x+4y=0Dy−2x−4y=0
(D−2)x+4y=0−2x+(D−4)y=0 Multiply first equation by 2 and second equarion by D−2
2(D−2)x+8y=0−2(D−2)x+(D−2)(D−4)y=0 Add two equations
−2(D−2)x+(D−2)(D−4)y
+(−2(D−2)x+(D−2)(D−4)y)=0 Simplify
D2−6D+16y=0 Auxiliary equation
r2−6r+16=0
r=3±i7
y(t)=c1e3tcos(7t)+c2e3tsin(7t) Then
dtdy=3c1e3tcos(7t)+3c2e3tsin(7t)
−7c1e3tsin(7t)+7c2e3tcos(7t)Substitute
dtdy=2x+4y
x=−2y+21dtdy
x=−2c1e3tcos(7t)−2c2e3tsin(7t)
+23c1e3tcos(7t)+23c2e3tsin(7t)
−27c1e3tsin(7t)+27c2e3tcos(7t)
x(t)=(−21c1+27c2)e3tcos(7t)
+(−21c2−27c1)e3tsin(7t)
y(t)=c1e3tcos(7t)+c2e3tsin(7t)
Comments