Question #349893

dx dt=2x-4y 

dx dt=2x+4y


1
Expert's answer
2022-06-14T13:06:37-0400
dxdt=2x4y\dfrac{dx}{dt}=2x-4ydydt=2x+4y\dfrac{dy}{dt}=2x+4y

Dx2x+4y=0Dx-2x+4y=0Dy2x4y=0Dy-2x-4y=0

(D2)x+4y=0(D-2)x+4y=02x+(D4)y=0-2x+(D-4)y=0

Multiply first equation by 22 and second equarion by D2D-2


2(D2)x+8y=02(D-2)x+8y=02(D2)x+(D2)(D4)y=0-2(D-2)x+(D-2)(D-4)y=0

Add two equations


2(D2)x+(D2)(D4)y-2(D-2)x+(D-2)(D-4)y

+(2(D2)x+(D2)(D4)y)=0+(-2(D-2)x+(D-2)(D-4)y)=0

Simplify

D26D+16y=0D^2-6D+16y=0

Auxiliary equation


r26r+16=0r^2-6r+16=0

r=3±i7r=3\pm i\sqrt{7}

y(t)=c1e3tcos(7t)+c2e3tsin(7t)y(t)=c_1e^{3t}\cos(\sqrt{7}t)+c_2e^{3t}\sin(\sqrt{7}t)

Then


dydt=3c1e3tcos(7t)+3c2e3tsin(7t)\dfrac{dy}{dt}=3c_1e^{3t}\cos(\sqrt{7}t)+3c_2e^{3t}\sin(\sqrt{7}t)

7c1e3tsin(7t)+7c2e3tcos(7t)-\sqrt{7}c_1e^{3t}\sin(\sqrt{7}t)+\sqrt{7}c_2e^{3t}\cos(\sqrt{7}t)

Substitute


dydt=2x+4y\dfrac{dy}{dt}=2x+4y

x=2y+12dydtx=-2y+\dfrac{1}{2}\dfrac{dy}{dt}


x=2c1e3tcos(7t)2c2e3tsin(7t)x=-2c_1e^{3t}\cos(\sqrt{7}t)-2c_2e^{3t}\sin(\sqrt{7}t)

+32c1e3tcos(7t)+32c2e3tsin(7t)+\dfrac{3}{2}c_1e^{3t}\cos(\sqrt{7}t)+\dfrac{3}{2}c_2e^{3t}\sin(\sqrt{7}t)

72c1e3tsin(7t)+72c2e3tcos(7t)-\dfrac{\sqrt{7}}{2}c_1e^{3t}\sin(\sqrt{7}t)+\dfrac{\sqrt{7}}{2}c_2e^{3t}\cos(\sqrt{7}t)



x(t)=(12c1+72c2)e3tcos(7t)x(t)=(-\dfrac{1}{2}c_1+\dfrac{\sqrt{7}}{2}c_2)e^{3t}\cos(\sqrt{7}t)

+(12c272c1)e3tsin(7t)+(-\dfrac{1}{2}c_2-\dfrac{\sqrt{7}}{2}c_1)e^{3t}\sin(\sqrt{7}t)

y(t)=c1e3tcos(7t)+c2e3tsin(7t)y(t)=c_1e^{3t}\cos(\sqrt{7}t)+c_2e^{3t}\sin(\sqrt{7}t)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS