Question #349888

x^2dy/dx-3y^4=2xy


1
Expert's answer
2022-06-13T23:02:13-0400
x2dydx3y4=2xyx^2\dfrac{dy}{dx}-3y^4=2xy

Let u=y3.u=y^3. Then u=3y2yu'=3y^2y'

3x2y2y9y6=6xy33x^2y^2y'-9y^6=6xy^3

x2u6xu=9u2x^2u'-6xu=9u^2

u6xu=9x2u2u'-\dfrac{6}{x}u=\dfrac{9}{x^2}u^2

Bernoulli Equation


z=u12=u1z=u^{1-2}=u^{-1}

z=u2uz'=-u^{-2}u'

z+6xz=9x2z'+\dfrac{6}{x}z=-\dfrac{9}{x^2}

x6z+6x5z=9x4x^6z'+6x^5z=-9x^4

d(x6z)=9x4dxd(x^6z)=-9x^4dx


x6z=9x55+C5x^6z=-\dfrac{9x^5}{5}+\dfrac{C}{5}

z=C9x55x6z=\dfrac{C-9x^5}{5x^6}

y3=5x6C9x5y^3=\dfrac{5x^6}{C-9x^5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS