Answer to Question #348972 in Differential Equations for Beauti

Question #348972

(D^3+2D^2D'-DD'^2-2D'^3)z=(y+2)e^x

1
Expert's answer
2022-06-09T06:09:12-0400

(D3+2D2DDD22D3)z=(y+2)ex\left(D^3+2D^2D^\prime-DD^{\prime2}-2D^{\prime3}\right)z=\left(y+2\right)e^x

Find the complementary function z=f1(y+m1x)+f2(y+m2x)++fn(y+mnx)z=f_1\left(y+m_1x\right)+f_2\left(y+m_2x\right)+\ldots+f_n\left(y+m_nx\right)

(D3+2D2DDD22D3)z=0\left(D^3+2D^2D^\prime-DD^{\prime2}-2D^{\prime3}\right)z=0 ,

The auxiliary equation is

m3+2m2m2=0m^3+2m^2-m-2=0 ,

m2(m+2)(m+2)=(m21)(m+2)=(m1)(m+1)(m+2)=0m^2\left(m+2\right)-\left(m+2\right)=\left(m^2-1\right)\left(m+2\right)=\left(m-1\right)\left(m+1\right)\left(m+2\right)=0 ,

m1=2, m2=1, m3=1m_1=-2,\ m_2=-1,\ m_3=1 ,

C.I.=f1(y2x)+f2(yx)+f3(y+x)C.I.=f_1\left(y-2x\right)+f_2\left(y-x\right)+f_3\left(y+x\right) .


Then the particular integral (P.I.) is given by case  G(x,y)=eax+byxrysG\left(x,y\right)=e^{ax+by}x^ry^s :

P.I.=1(D3+2D2DDD22D3)(y+2)ex=P.I.=\frac{1}{\left(D^3+2D^2D^\prime-DD^{\prime2}-2D^{\prime3}\right)}\left(y+2\right)e^x=

(a=1,b=0)=ex((D+1)3+2(D+1)2D(D+1)D22D3)(y+2)=\left(a=1,b=0\right)=\frac{e^x}{\left(\left(D+1\right)^3+2\left(D+1\right)^2D^\prime-\left(D+1\right)D^{\prime2}-2D^{\prime3}\right)}\left(y+2\right)=

=ex(1+D3+3D2+3D+2D2D+4DD+2DDD2D22D3)(y+2)==\frac{e^x}{\left({1+D}^3+3D^2+3D+2D^2D^\prime+4DD^\prime+2D^\prime-DD^{\prime2}-D^{\prime2}-2D^{\prime3}\right)}\left(y+2\right)=

=ex(1+D3+3D2+3D+2D2D+4DD+2DDD2D22D3)1(y+2)={=e}^x\left(1+D^3+3D^2+3D+2D^2D^\prime+4DD^\prime+2D^\prime-DD^{\prime2}-D^{\prime2}-2D^{\prime3}\right)^{-1}\left(y+2\right)=

=ex(1D33D23D2D2D4DD2D+DD2+D2+2D3)(y+2)={=e}^x\left(1-D^3-3D^2-3D-2D^2D^\prime-4DD^\prime-2D^\prime+DD^{\prime2}+D^{\prime2}+2D^{\prime3}\right)\left(y+2\right)=

=ex(12D)(y+2)=ex(y+22)=yex{=e}^x\left(1-2D^\prime\right)\left(y+2\right)=e^x\left(y+2-2\right)=ye^x .

Answer:

z=f1(y2x)+f2(yx)+f3(y+x)+yexz=f_1\left(y-2x\right)+f_2\left(y-x\right)+f_3\left(y+x\right)+ye^x .


NB: D=x, D=y, 11+x=1x+x2x3+...D=\frac{\partial}{\partial x},\ D^\prime=\frac{\partial}{\partial y},\ \frac{1}{1+x}=1-x+x^2-x^3+...



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment