(D3+2D2D′−DD′2−2D′3)z=(y+2)ex
Find the complementary function z=f1(y+m1x)+f2(y+m2x)+…+fn(y+mnx)
(D3+2D2D′−DD′2−2D′3)z=0 ,
The auxiliary equation is
m3+2m2−m−2=0 ,
m2(m+2)−(m+2)=(m2−1)(m+2)=(m−1)(m+1)(m+2)=0 ,
m1=−2, m2=−1, m3=1 ,
C.I.=f1(y−2x)+f2(y−x)+f3(y+x) .
Then the particular integral (P.I.) is given by case G(x,y)=eax+byxrys :
P.I.=(D3+2D2D′−DD′2−2D′3)1(y+2)ex=
(a=1,b=0)=((D+1)3+2(D+1)2D′−(D+1)D′2−2D′3)ex(y+2)=
=(1+D3+3D2+3D+2D2D′+4DD′+2D′−DD′2−D′2−2D′3)ex(y+2)=
=ex(1+D3+3D2+3D+2D2D′+4DD′+2D′−DD′2−D′2−2D′3)−1(y+2)=
=ex(1−D3−3D2−3D−2D2D′−4DD′−2D′+DD′2+D′2+2D′3)(y+2)=
=ex(1−2D′)(y+2)=ex(y+2−2)=yex .
Answer:
z=f1(y−2x)+f2(y−x)+f3(y+x)+yex .
NB: D=∂x∂, D′=∂y∂, 1+x1=1−x+x2−x3+...
Comments
Leave a comment