Question #348537

y'' - 3y' - 10y = 0 ; y(0)=1 and y'(0)=10


1
Expert's answer
2022-06-07T08:21:36-0400

Corresponding (auxiliary) equation


r23r10=0r^2-3r-10=0

r1=2,r2=5r_1=-2, r_2=5

The general solution of the homogeneous differential equation is


y=c1e2x+c2e5xy=c_1e^{-2x}+c_2e^{5x}

y(0)=c1+c2=1y(0)=c_1+c_2=1

y=2c1e2x+5c2e5xy'=-2c_1e^{-2x}+5c_2e^{5x}

y(0)=2c1+5c2=10y'(0)=-2c_1+5c_2=10

c1=57,c2=127c_1=-\dfrac{5}{7}, c_2=\dfrac{12}{7}


y=57e2x+127e5xy=-\dfrac{5}{7}e^{-2x}+\dfrac{12}{7}e^{5x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS