Solve the initial value problem:
π₯^2π¦" + π₯π¦β² + 9π¦ = 0; π¦(1) = 2, π¦β²(1) = 0
"\\text{Solve } x^{2} \\frac{d^{2} y(x)}{d x^{2}}+x \\frac{d y(x)}{d x}+9 y(x)=0,\\text{ such that } y(1)=2 \\text{ and } y^{\\prime}(1)=0:\\\\[3mm]\n\\text{Assume a solution to this Euler-Cauchy equation will be proportional to } x^{\\lambda} \\text{ for some constant } \\lambda.\\\\[2mm]\n\\text{ Substitute } y(x)=x^{\\lambda} \\text{ into the differential equation:}\\\\\nx^{2} \\frac{d^{2}}{d x^{2}}\\left(x^{\\lambda}\\right)+x \\frac{d}{d x}\\left(x^{\\lambda}\\right)+9 x^{\\lambda}=0\\\\[2mm]\n\\text{ Substitute }\\frac{d^{2}}{d x^{2}}\\left(x^{\\lambda}\\right)=\\lambda(\\lambda-1) x^{\\lambda-2} \\text{ and }\\frac{d}{d x}\\left(x^{\\lambda}\\right)=\\lambda x^{\\lambda-1} x^{2} x^{\\lambda}+9 x^{\\lambda}=0\\\\[4mm]\n\\text{ Factor out }x^{x} :\\\\[2mm]\n\\left(\\lambda^{2}+9\\right) x^{\\lambda}=0\\\\[3mm]\n\\text{ Assuming } x \\neq 0, \\text{ the zeros must come from the polynomial:}\\\\\nx^{2}+9=0\\\\[2mm]\n\\text{ Solve for } \\lambda :\\\\[1.5mm]\n\\lambda=3 i \\text { or } \\lambda=-3 i"
"f\\text{The roots } x=\\pm 3 i \\text{ give } y_{1}(x)=c_{1} x^{3 i}, y_{2}(x)=c_{2} x^{-3 i} \\text{ as solutions, where } c_{1} \\text{ and } c_{2} \\text{ are arbitrary constants.}\\\\[2mm]\n\\text{ The general solution is the sum of the above solutions:}\\\\[2mm]\ny(x)=y_{1}(x)+y_{2}(x)=c_{1} x^{3 i}+c_{2} x^{-3 i}\\\\[4mm]\n\\text{ Using } x^{\\lambda}=e^{\\lambda \\log (x)}, \\text{ apply Euler's identity } e^{\\alpha+i \\beta}=e^{\\alpha} \\cos (\\beta)+i e^{\\alpha} \\sin (\\beta) :\\\\[2mm]\ny(x)=c_{1}(\\cos (3 \\log (x))+i \\sin (3 \\log (x)))+c_{2}(\\cos (3 \\log (x))-i \\sin (3 \\log (x)))\\\\[2mm]\n\\text{ Regroup terms:}\\\\[1.5mm]\ny(x)=\\left(c_{1}+c_{2}\\right) \\cos (3 \\log (x))+i\\left(c_{1}-c_{2}\\right) \\sin (3 \\log (x))\\\\[4mm]\n\\text{ Redefine } c_{1}+c_{2} \\text{ as } c_{1} \\text{ and } i\\left(c_{1}-c_{2}\\right) \\text{ as } c_{2}, \\text{ since these are arbitrary constants:}\\\\[2mm]\ny(x)=c_{1} \\cos (3 \\log (x))+c_{2} \\sin (3 \\log (x))\\\\[2mm]\n\\text{ Solve for the unknown constants using the initial conditions:}\\\\[2mm]\n\\text{ Compute }\\frac{d y(x)}{d x} :\\\\[2mm]\n\\frac{d y(x)}{d x}=\\frac{d}{d x}\\left(c_{1} \\cos (3 \\log (x))+c_{2} \\sin (3 \\log (x))\\right)\\\\[1.5mm]\n=-\\frac{3 c_{1} \\sin (3 \\log (x))}{x}+\\frac{\\left.3 c_{2} \\cos 3 \\log (x)\\right)}{x}\\\\[2mm]\n\\text{ Substitute } y(1)=2 \\text{ into } y(x)=\\cos (3 \\log (x)) c_{1}+\\sin (3 \\log (x)) c_{2}:\\\\[2mm]\nc_{1}=2"
"\\text{ Substitute } y^{\\prime}(1)=0 \\text{ into } \\frac{d y(x)}{d x}=-\\frac{3 \\sin (3 \\log (x)) c_{1}}{x}+\\frac{3 \\cos (3 \\log (x)) c_{2}}{x} : 3 c_{2}=0\\\\[2mm]\n\\text{ Solve the system:}\\\\\n\\begin{aligned}\n&c_{1}=2 \\\\\n&c_{2}=0\n\\end{aligned}\n\\\\[2mm]\n\\text{ Substitute } c_{1}=2 \\text{ and } c_{2}=0 \\text{ into } y(x)=\\cos (3 \\log (x)) c_{1}+\\sin (3 \\log (x)) c_{2} :\\\\[4mm]\n\\text{ Answer:}\\\\[2mm]\ny(x)=2 \\cos (3 \\log (x))"
Comments
Leave a comment