Question #313869

solve (1+t²)y' +4ty=(1+t²)^-2; y(0)=1


1
Expert's answer
2022-03-20T06:43:43-0400

 Solve the linear equation dy(t)dt(t2+1)+4ty(t)=1(t2+1)2, such that y(0)=1: Divide both sides by t2+1:dy(t)dt+4ty(t)t2+1=1(t2+1)3 Let μ(t)=e(4t)/(t2+1)dt=(t2+1)2. Multiply both sides by μ(t):(t2+1)2dy(t)dt+(4t(t2+1))y(t)=1t2+1 Substitute 4t(t2+1)=ddt((t2+1)2):(t2+1)2dy(t)dt+ddt((t2+1)2)y(t)=1t2+1 Apply the reverse product rule fdgdt+gdfdt=ddt(fg) to the left-hand side:ddt((t2+1)2y(t))=1t2+1\text{ Solve the linear equation } \frac{d y(t)}{d t}\left(t^{2}+1\right)+4 t y(t)=\frac{1}{\left(t^{2}+1\right)^{2}}, \text{ such that } y(0)=1 :\\[4mm] \text{ Divide both sides by } t^{2}+1 :\\[1.5mm] \frac{d y(t)}{d t}+\frac{4 t y(t)}{t^{2}+1}=\frac{1}{\left(t^{2}+1\right)^{3}}\\[2mm] \text{ Let } \mu(t)=e^{\int(4 t) /\left(t^{2}+1\right) d t}=\left(t^{2}+1\right)^{2}.\\[4mm] \text{ Multiply both sides by } \mu(t) :\\[1.5mm] \left(t^{2}+1\right)^{2} \frac{d y(t)}{d t}+\left(4 t\left(t^{2}+1\right)\right) y(t)=\frac{1}{t^{2}+1}\\[2mm] \text{ Substitute } 4 t\left(t^{2}+1\right)=\frac{d}{d t}\left(\left(t^{2}+1\right)^{2}\right) :\\[2mm] \left(t^{2}+1\right)^{2} \frac{d y(t)}{d t}+\frac{d}{d t}\left(\left(t^{2}+1\right)^{2}\right) y(t)=\frac{1}{t^{2}+1}\\[4mm] \text{ Apply the reverse product rule } f \frac{d g}{d t}+g \frac{d f}{d t}=\frac{d}{d t}(f g) \text{ to the left-hand side:}\\[2mm] \frac{d}{d t}\left(\left(t^{2}+1\right)^{2} y(t)\right)=\frac{1}{t^{2}+1}


Integrate both sides with respect to t:ddt((t2+1)2y(t))dt=1t2+1dtEvaluate the integrals:(t2+1)2y(t)=tan1(t)+c1, where c1 is an arbitrary constant.Divide both sides by μ(t)=(t2+1)2:y(t)=tan1(t)+c1(t2+1)2 Solve for c1 using the initial conditions: Substitute y(0)=1 into y(t)=tan1(t)+c1(t2+1)2:c1=1 Substitute c1=1 into y(t)=tan1(t)+c1(t2+1)2 Answer:y(t)=tan1(t)+1(t2+1)2\text{Integrate both sides with respect to } t :\\[1.5mm] \int \frac{d}{d t}\left(\left(t^{2}+1\right)^{2} y(t)\right) d t=\int \frac{1}{t^{2}+1} d t\\[4mm] \text{Evaluate the integrals:}\\ \left(t^{2}+1\right)^{2} y(t)=\tan ^{-1}(t)+c_{1}, \text{ where } c_{1} \text{ is an arbitrary constant.}\\[4mm] \text{Divide both sides by } \mu(t)=\left(t^{2}+1\right)^{2} :\\[1.5mm] y(t)=\frac{\tan ^{-1}(t)+c_{1}}{\left(t^{2}+1\right)^{2}}\\[4mm] \text{ Solve for } c_{1} \text{ using the initial conditions:}\\[2mm] \text{ Substitute } y(0)=1 \text{ into } y(t)=\frac{\tan ^{-1}(t)+c 1}{\left(t^{2}+1\right)^{2}} :\\ c_{1}=1\\[2mm] \text{ Substitute } c_{1}=1 \text{ into } y(t)=\frac{\tan ^{-1}(t)+c_{1}}{\left(t^{2}+1\right)^{2}}\\[2mm] \text{ Answer:}\\[2mm] y(t)=\frac{\tan ^{-1}(t)+1}{\left(t^{2}+1\right)^{2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS