Solve the linear equation dtdy(t)(t2+1)+4ty(t)=(t2+1)21, such that y(0)=1: Divide both sides by t2+1:dtdy(t)+t2+14ty(t)=(t2+1)31 Let μ(t)=e∫(4t)/(t2+1)dt=(t2+1)2. Multiply both sides by μ(t):(t2+1)2dtdy(t)+(4t(t2+1))y(t)=t2+11 Substitute 4t(t2+1)=dtd((t2+1)2):(t2+1)2dtdy(t)+dtd((t2+1)2)y(t)=t2+11 Apply the reverse product rule fdtdg+gdtdf=dtd(fg) to the left-hand side:dtd((t2+1)2y(t))=t2+11
Integrate both sides with respect to t:∫dtd((t2+1)2y(t))dt=∫t2+11dtEvaluate the integrals:(t2+1)2y(t)=tan−1(t)+c1, where c1 is an arbitrary constant.Divide both sides by μ(t)=(t2+1)2:y(t)=(t2+1)2tan−1(t)+c1 Solve for c1 using the initial conditions: Substitute y(0)=1 into y(t)=(t2+1)2tan−1(t)+c1:c1=1 Substitute c1=1 into y(t)=(t2+1)2tan−1(t)+c1 Answer:y(t)=(t2+1)2tan−1(t)+1
Comments