Answer to Question #313850 in Differential Equations for sly

Question #313850

y''-y=3x^2e^x

1
Expert's answer
2022-03-19T02:36:00-0400

"\\text{Solve } \\frac{d^{2} y(x)}{d x^{2}}-y(x)=3 e^{x} x^{2}\\\\[2mm]\n\\text{The general solution will be the sum of the complementary solution and particular solution.}\\\\\n\\text{Find the complementary solution by solving } \\frac{d^{2} y(x)}{d x^{2}}-y(x)=0 :\\\\[2mm]\n\\text{Assume a solution will be proportional to } e^{\\lambda x} \\text{ for some constant } \\lambda.\\\\[2mm]\n\\text{ Substitute } y(x)=e^{\\lambda x} \\text{ into the differential equation:}\\\\\n\\frac{d^{2}}{d x^{2}}\\left(e^{\\lambda x}\\right)-e^{\\lambda x}=0\\\\[2mm]\n\\text{ Substitute } \\frac{d^{2}}{d x^{2}}\\left(e^{\\lambda x}\\right)=\\lambda^{2} e^{\\lambda x} :\\\\[2mm]\nx^{2} e^{x x}-e^{x x}=0\\\\[4mm]\n\\text{ Factor out }e^{\\lambda x} : \\left(\\lambda^{2}-1\\right) e^{\\lambda x}=0\\\\"


"\\text{Since } e^{\\lambda x} \\neq 0 \\text{ for any finite } \\lambda, \\text{ the zeros must come from the polynomial:}\\\\ \\lambda^{2}-1=0\\\\[2mm]\n\\text{ Factor:}\\\\[2mm]\n(\\lambda-1)(\\lambda+1)=0\\\\[2mm]\n\\text{Solve for } \\lambda :\\\\[2mm]\n\\lambda=-1 \\text { or } \\lambda=1\\\\[4mm]\n\\text{The root } \\lambda=-1 \\text{ gives } y_{1}(x)=c_{1} e^{-x} \\text{ as a solution, where } c_{1} \\text{ is an arbitrary constant.}\\\\[2mm]\n\\text{The root } \\lambda=1 gives y_{2}(x)=c_{2} e^{x} \\text{ as a solution, where } c_{2} \\text{ is an arbitrary constant. The general solution is the sum of the above solutions:}\\\\[2mm]\ny(x)=y_{1}(x)+y_{2}(x)=c_{1} e^{-x}+c_{2} e^{x}\\\\[4mm]\n\\text{Determine the particular solution to } \\frac{d^{2} y(x)}{d x^{2}}-y(x)=3 e^{x} x^{2} \\text{ by the method of undetermined coefficients:}\\\\[2mm]\n\\text{The particular solution to } \\frac{d^{2} y(x)}{d x^{2}}-y(x)=3 e^{x} x^{2} \\text{ is of the form:}\\\\[2mm]\ny_{p}(x)=x\\left(a_{1} e^{x}+a_{2} e^{x} x+a_{3} e^{x} x^{2}\\right), \\text{ where }a_{1} e^{x}+a_{2} e^{x} x+a_{3} e^{x} x^{2}\\\\[2mm]\n\\text{was multiplied by x to account for } e^{x} \\text{ in the complementary solution.}"


"\\text{Solve for the unknown constants } a_{1}, a_{2}, and a_{3} :\\\\[2mm]\n\\text{ Compute }\\frac{d^{2} y_{p}(x)}{d x^{2}} :\\\\\n\\begin{aligned}\n\\frac{d^{2} y_{p}(x)}{d x^{2}} &=\\frac{d^{2}}{d x^{2}}\\left(a_{1} e^{x} x+a_{2} e^{x} x^{2}+a_{3} e^{x} x^{3}\\right) \\\\\n&=a_{1}\\left(2 e^{x}+e^{x} x\\right)+a_{2}\\left(2 e^{x}+e^{x} x^{2}+4 e^{x} x\\right)+a_{3}\\left(e^{x} x^{3}+6 e^{x} x^{2}+6 e^{x} x\\right)\n\\end{aligned}\n\\\\[2mm]\n\\text{Substitute the particular solution} y_{p}(x) \\text{ into the differential equation:}\\\\\n\\begin{aligned}\n&\\frac{d^{2} y_{p}(x)}{d x^{2}}-y_{p}(x)=3 e^{x} x^{2} \\\\\n&a_{1}\\left(2 e^{x}+e^{x} x\\right)+a_{2}\\left(2 e^{x}+e^{x} x^{2}+4 e^{x} x\\right)+ \\\\\n&\\quad a_{3}\\left(e^{x} x^{3}+6 e^{x} x^{2}+6 e^{x} x\\right)-\\left(a_{1} e^{x} x+a_{2} e^{x} x^{2}+a_{3} e^{x} x^{3}\\right)=3 e^{x} x^{2}\n\\end{aligned}\n\\\\[2mm]\n\\text{ Simplify:}\\\\[1mm]\n\\left(2 a_{1}+2 a_{2}\\right) e^{x}+\\left(4 a_{2}+6 a_{3}\\right) e^{x} x+6 a_{3} e^{x} x^{2}=3 e^{x} x^{2}\\\\[2mm]\n\\text{Equate the coefficients of } e^{x} \\text{ on both sides of the equation:}\\\\[2mm]\n2 a_{1}+2 a_{2}=0\\\\[2mm]\n\\text{ Equate the coefficients of } e^{x} x \\text{ on both sides of the equation:}\\\\[1mm]\n4 a_{2}+6 a_{3}=0"


"\\text{Equate the coefficients of } e^{x} x^{2} \\text{ on both sides of the equation:}\\\\\n6 a_{3}=3\\\\\n\\text{ Solve the system:}\\\\\n\\begin{aligned}\n&a_{1}=\\frac{3}{4} \\\\\n&a_{2}=-\\frac{3}{4} \\\\\n&a_{3}=\\frac{1}{2}\n\\end{aligned}\n\\\\[2mm]\n\\text{Substitute } a_{1}, a_{2}, \\text{ and } a_{3} \\text{ into } y_{p}(x)=e^{x} x a_{1}+e^{x} x^{2} a_{2}+e^{x} x^{3} a_{3} :\\\\\ny_{p}(x)=\\frac{e^{x} x^{3}}{2}-\\frac{3 e^{x} x^{2}}{4}+\\frac{3 e^{x} x}{4}\\\\[4mm]\n\\text{ The general solution is:}\\\\[2mm]\ny(x)=y_{c}(x)+y_{p}(x)=\\frac{e^{x} x^{3}}{2}-\\frac{3 e^{x} x^{2}}{4}+\\frac{3 e^{x} x}{4}+c_{1} e^{-x}+c_{2} e^{x}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS