Find the integrating factor and solve the following equations:
( π¦ β π₯^2) ππ₯ +( π₯^2sin π¦ β π₯ )ππ¦ = 0
Try 1x2\frac{1}{x^2}x21β as an integrating factor:
(yx2β1)dx+(sinβ‘yβ1x)dy=0d(βyxβxβcosβ‘y)=0yx+x+cosβ‘y=Const\left( \frac{y}{x^2}-1 \right) dx+\left( \sin y-\frac{1}{x} \right) dy=0\\d\left( -\frac{y}{x}-x-\cos y \right) =0\\\frac{y}{x}+x+\cos y=Const(x2yββ1)dx+(sinyβx1β)dy=0d(βxyββxβcosy)=0xyβ+x+cosy=Const
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment