Question #313829

find the value of b for which the given equation is exact, and then solve it using that value of b


(xy^(2)+bx^(2)y)dx+(x+y)x^(2)dy=0


1
Expert's answer
2022-03-19T02:35:50-0400

The given equation is (xy2+bx2y)dx+(x+y)x2dy=0(xy^{2}+bx^{2}y)dx+(x+y)x^{2}dy=0.


Since the equation is exact we must have, My=Nx\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}.


Here M=xy2+bx2y;N=x2(x+y)M = xy^{2}+bx^{2}y; N=x^{2}(x+y)


Then, 2xy+bx2=3x2+2xy    b=32xy+bx^{2} = 3x^{2}+2xy \implies b = 3


Therefore, the given equation becomes (xy2+3x2y)dx+(x+y)x2dy=0(xy^{2}+3x^{2}y)dx+(x+y)x^{2}dy=0, which can be written as


dydx=xy2+3x2yx2(x+y)=xy(y+3x)x2(x+y)=y(y+3x)x(x+y)\begin{aligned} \dfrac{dy}{dx} &= \dfrac{xy^2+3x^2y}{x^2(x+y)}\\ &=\dfrac{xy(y+3x)}{x^2(x+y)}\\ &=\dfrac{y(y+3x)}{x(x+y)}\\ \end{aligned}

This is a homogeneous equation. We use substitution to find the general solution.


Put y=vxy=vx. Then dydx=v+xdvdx\dfrac{dy}{dx} = v + x\dfrac{dv}{dx}. Thus,


v+xdvdx=vx(vx+3x)x(x+vx)=v(v+3)(1+v)xdvdx=v(v+3)(1+v)v=v2+3vvv2(1+v)xdvdx=2v1+v(1+v2v)dv=dxx12dvv+12dv=dxxdvv+dv=2dxxIntegrating both sides,logv+v=2logx+logclogv+v=logcx2v+log(vcx2)=0log(vcx2)=vvcx2=evycx3=eyxyeyx=cx3\begin{aligned} v+ x \frac{dv}{dx} &= \frac{vx(vx+3x)}{x(x+vx)}\\ &= \frac{v(v+3)}{(1+v)}\\ x \frac{dv}{dx} &= \frac{v(v+3)}{(1+v)} - v\\ &= \frac{v^2+3v-v-v^2}{(1+v)} \\ x \frac{dv}{dx}&= \frac{2v}{1+v} \\ \therefore \Big(\frac{1+v}{2v}\Big)dv &= \frac{dx}{x}\\ \frac{1}{2}\frac{dv}{v} + \frac{1}{2}dv &= \frac{dx}{x}\\ \frac{dv}{v}+dv &= 2 \frac{dx}{x}\\ \text{Integrating both sides,}\\ \log v + v &= 2\log x + \log c\\ \log v + v &= \log cx^2\\ v + \log\Big(\frac{v}{cx^2}\Big) &= 0\\ \log\Big(\frac{v}{cx^2}\Big) &= -v\\ \frac{v}{cx^2} &= e^{-v}\\ \frac{y}{cx^3} &= e^{-\frac{y}{x}}\\ ye^{\frac{y}{x}}&=cx^3 \end{aligned}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS