a0xnyn+a1xn−1yn+...+an−1xy′+any=f(x)
x=eu
a0λ(λ−1)(λ−2)...(λ−n+1)...+an−2λ(λ−1)+an−1λ+an=0
(λ−1)λ+λ−1=0
λ2−1=0
y′′−y=eu1+1
λ1=1
λ2=−1
y=Ceu+euC1
yi=useau(Rm(u)cos(bu)+Tm(u)sin(bu))
s=0 if a+bi is not a root or s=k if it is.
Solution for 1:
a+bi=0, then s=0
y0=A
y0′′=0
A=-1
y0=−1
Solution for eu1
a+bi=-1
s=1
y1=euAu
y1′′=euAu−2A
eu−2A=eu1
A=-0.5
y1=−2euu
y=Ceu−2euu+euC1−1
u=ln(x)
y=2x−ln(x)+Cx+xC1−1
Comments