Solve
x^2y′′+ xy′− y =1/x + 1
"a_0x^ny^n+a_1x^{n-1}y^n+...+a_{n-1}xy'+a^ny=f(x)"
"x=e^u"
"a_0\\lambda(\\lambda-1)(\\lambda-2)...(\\lambda-n+1)...+a_{n-2}\\lambda(\\lambda-1)+a_{n-1}\\lambda+a_n=0"
"(\\lambda-1)\\lambda+\\lambda-1=0"
"\\lambda^2-1=0"
"y''-y=\\frac{1}{e^u}+1"
"\\lambda_1=1"
"\\lambda_2=-1"
"y=Ce^u+\\frac{C_1}{e^u}"
"y_i=u^se^{au}(R_m(u)cos(bu)+T_m(u)sin(bu))"
s=0 if a+bi is not a root or s=k if it is.
Solution for 1:
a+bi=0, then s=0
"y_0=A"
"y''_0=0"
A=-1
"y_0=-1"
Solution for "\\frac{1}{e^u}"
a+bi=-1
s=1
"y_1=\\frac{Au}{e^u}"
"y''_1=\\frac{Au-2A}{e^u}"
"\\frac{-2A}{e^u}=\\frac{1}{e^u}"
A=-0.5
"y_1=-\\frac{u}{2e^u}"
"y=Ce^u-\\frac{u}{2e^u}+\\frac{C_1}{e^u}-1"
u=ln(x)
"y=\\frac{-ln(x)}{2x}+Cx+\\frac{C_1}{x}-1"
Comments
Leave a comment