x=eu
a0​λ(λ−1)(λ−2)...(λ−n+1)...an−2​λ(λ−1)+an−1​λ+an​=0
(λ−1)λ−2λ+2=0
λ2−3λ+2=0
λ1​=2
λ2​=1
y=Ceu+C1​e2u
yi​=useau(Rm​(u)cos(bu)+Tm​(u)sin(bu))
s=0 if a+bi is not a root or s=k if it is.
a+bi=4i+4 s=0
y0​=e4u(Bsin(4u)+Acos(4u))
y0′​(u)=(4B−4A)e4usin(4u)+(4B+4A)e4ucos(4u)
y0′′​=32Be4ucos(4u)−32Ae4usin(4u)
(−10B−20A)e4usin(4u)+(20B−10A)e4ucos(4u)=e4usin(4u)
A=25−1​
B=50−1​
y0​=e4u(50−sin(4u)​−25cos(4u)​)
y=e4u(50−sin(4u)​−25cos(4u)​)+Ceu+C1​e2u
Comments