a)y′′(t)−6y′(t)+9y(t)=t2e3ty′(0)=6,y(0)=2.L{y′′(t)−6y′(t)+9y(t)}=L{t2e3t}L{y′′(t)}−6L{y′(t)}+9L{y(t)}=L{t2e3t}p2Y(p)−py(0)−y′(0)−6(pY(p)−y(0))++9Y(p)=(p−3)32Y(p)(p2−6p+9)−2p−6+12=(p−3)32Y(p)(p−3)2−2(p−3)=(p−3)32Y(p)(p−3)2=(p−3)32+2(p−3)Y(p)=(p−3)52+p−32L−1{Y(p)}=L−1{(p−3)52}+L−1{p−32}y(t)=4!2t4e3t+2e3ty(t)=121t4e3t+2e3tb)y′′(t)−2y′(t)+3y(t)=e−3ty′(0)=0,y(0)=0.L{y′′(t)−2y′(t)+3y(t)}=L{e−3t}L{y′′(t)}−2L{y′(t)}+3L{y(t)}=L{e−3t}p2Y(p)−py(0)−y′(0)−2(pY(p)−y(0))++3Y(p)=p+31Y(p)(p2−2p+3)=p+31Y(p)=(p+3)(p2−2p+3)1Y(p)=181p+31−181p2−2p+3p−5Y(p)=181p+31−181(p−1)2+2p−5Y(p)=181p+31−181(p−1)2+2p−1−4Y(p)=181p+31−181(p−1)2+2p−1+92(p−1)2+21L−1{Y(p)}=L−1{181p+31}−−L−1{181(p−1)2+2p−1}+L−1{92(p−1)2+21}y(t)=181e−3t−181etcos2t+9221etsin2ty(t)=181e−3t−181etcos2t+92etsin2t
Comments