The given equation can be written as ( D 2 + 4 D + 13 ) y = e 2 t cos t (D^{2}+4D+13)y = e^{2t} \cos t ( D 2 + 4 D + 13 ) y = e 2 t cos t .
The auxiliary equation is m 2 + 4 m + 13 = 0 m^2+4m+13=0 m 2 + 4 m + 13 = 0 . Solving for m,
m = − 4 ± 16 − 52 2 m = − 4 ± 6 i 2 m = − 2 ± 3 i \begin{aligned}
m &= \frac{-4\pm\sqrt{16-52}}{2}\\
m &= \frac{-4\pm 6i}{2}\\
m & = -2\pm 3i
\end{aligned} m m m = 2 − 4 ± 16 − 52 = 2 − 4 ± 6 i = − 2 ± 3 i
The complementary function is C.F = e − 2 t ( c 1 cos 3 t + c 2 sin 3 t ) \text{C.F} = e^{-2t}(c_1 \cos 3t + c_{2}\sin 3t) C.F = e − 2 t ( c 1 cos 3 t + c 2 sin 3 t )
P.I = 1 D 2 + 4 D + 13 e 2 t cos t = e 2 t ( 1 ( D + 2 ) 2 + 4 ( D + 2 ) + 13 ) cos t = e 2 t ( 1 D 2 + 4 D + 4 + 4 D + 8 + 13 ) cos t = e 2 t ( 1 D 2 + 8 D + 25 ) cos t = e 2 t ( 1 − 1 + 8 D + 25 ) cos t = e 2 t ( 1 24 + 8 D ) cos t = e 2 t ( 24 − 8 D 2 4 2 − 64 D 2 ) cos t = e 2 t ( 24 cos t − 8 D ( cos t ) 576 + 64 ) = e 2 t ( 24 cos t + 8 sin t 640 ) = e 2 t ( 3 cos t + sin t 80 ) \begin{aligned}
\text{P.I} &= \dfrac{1}{D^2 + 4D+13} e^{2t} \cos t\\
&= e^{2t}\Bigg(\dfrac{1}{(D+2)^2 + 4(D+2) +13}\Bigg) \cos t\\
&= e^{2t}\Bigg(\dfrac{1}{D^2+4D+4 + 4D +8 +13}\Bigg) \cos t\\
&= e^{2t}\Bigg(\dfrac{1}{D^2+8D+25}\Bigg) \cos t\\
&= e^{2t}\Bigg(\dfrac{1}{-1+8D+25}\Bigg) \cos t\\
&= e^{2t}\Bigg(\dfrac{1}{24+8D}\Bigg) \cos t\\
&= e^{2t}\Bigg(\dfrac{24-8D}{24^2-64D^2}\Bigg) \cos t\\
&= e^{2t}\Bigg(\dfrac{24\cos t-8D(\cos t)}{576+64} \Bigg)\\
&= e^{2t}\Bigg(\dfrac{24\cos t+8\sin t}{640}\Bigg) \\
&= e^{2t}\Bigg(\dfrac{3\cos t+\sin t}{80}\Bigg) \\
\end{aligned} P.I = D 2 + 4 D + 13 1 e 2 t cos t = e 2 t ( ( D + 2 ) 2 + 4 ( D + 2 ) + 13 1 ) cos t = e 2 t ( D 2 + 4 D + 4 + 4 D + 8 + 13 1 ) cos t = e 2 t ( D 2 + 8 D + 25 1 ) cos t = e 2 t ( − 1 + 8 D + 25 1 ) cos t = e 2 t ( 24 + 8 D 1 ) cos t = e 2 t ( 2 4 2 − 64 D 2 24 − 8 D ) cos t = e 2 t ( 576 + 64 24 cos t − 8 D ( cos t ) ) = e 2 t ( 640 24 cos t + 8 sin t ) = e 2 t ( 80 3 cos t + sin t )
The general solution is y = e − 2 t ( c 1 cos 3 t + c 2 sin 3 t ) + e 2 t 80 ( 3 cos t + sin t ) y = e^{-2t}(c_1 \cos 3t + c_{2}\sin 3t)+\dfrac{e^{2t}}{80}(3\cos t+\sin t) y = e − 2 t ( c 1 cos 3 t + c 2 sin 3 t ) + 80 e 2 t ( 3 cos t + sin t )
Comments