Question #311952

The equation of motion of a body is given by d2y/dt2 + 4dy/dt + 13y = e2tcost , where y is the distance and t is the time.

Determine a general solution for y in terms of t.


1
Expert's answer
2022-03-16T10:33:19-0400

The given equation can be written as (D2+4D+13)y=e2tcost(D^{2}+4D+13)y = e^{2t} \cos t.

The auxiliary equation is m2+4m+13=0m^2+4m+13=0 . Solving for m,

m=4±16522m=4±6i2m=2±3i\begin{aligned} m &= \frac{-4\pm\sqrt{16-52}}{2}\\ m &= \frac{-4\pm 6i}{2}\\ m & = -2\pm 3i \end{aligned}

The complementary function is C.F=e2t(c1cos3t+c2sin3t)\text{C.F} = e^{-2t}(c_1 \cos 3t + c_{2}\sin 3t)


P.I=1D2+4D+13e2tcost=e2t(1(D+2)2+4(D+2)+13)cost=e2t(1D2+4D+4+4D+8+13)cost=e2t(1D2+8D+25)cost=e2t(11+8D+25)cost=e2t(124+8D)cost=e2t(248D24264D2)cost=e2t(24cost8D(cost)576+64)=e2t(24cost+8sint640)=e2t(3cost+sint80)\begin{aligned} \text{P.I} &= \dfrac{1}{D^2 + 4D+13} e^{2t} \cos t\\ &= e^{2t}\Bigg(\dfrac{1}{(D+2)^2 + 4(D+2) +13}\Bigg) \cos t\\ &= e^{2t}\Bigg(\dfrac{1}{D^2+4D+4 + 4D +8 +13}\Bigg) \cos t\\ &= e^{2t}\Bigg(\dfrac{1}{D^2+8D+25}\Bigg) \cos t\\ &= e^{2t}\Bigg(\dfrac{1}{-1+8D+25}\Bigg) \cos t\\ &= e^{2t}\Bigg(\dfrac{1}{24+8D}\Bigg) \cos t\\ &= e^{2t}\Bigg(\dfrac{24-8D}{24^2-64D^2}\Bigg) \cos t\\ &= e^{2t}\Bigg(\dfrac{24\cos t-8D(\cos t)}{576+64} \Bigg)\\ &= e^{2t}\Bigg(\dfrac{24\cos t+8\sin t}{640}\Bigg) \\ &= e^{2t}\Bigg(\dfrac{3\cos t+\sin t}{80}\Bigg) \\ \end{aligned}


The general solution is y=e2t(c1cos3t+c2sin3t)+e2t80(3cost+sint)y = e^{-2t}(c_1 \cos 3t + c_{2}\sin 3t)+\dfrac{e^{2t}}{80}(3\cos t+\sin t)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS