The given equation can be written as (D2+4D+13)y=e2tcost.
The auxiliary equation is m2+4m+13=0 . Solving for m,
mmm=2−4±16−52=2−4±6i=−2±3i
The complementary function is C.F=e−2t(c1cos3t+c2sin3t)
P.I=D2+4D+131e2tcost=e2t((D+2)2+4(D+2)+131)cost=e2t(D2+4D+4+4D+8+131)cost=e2t(D2+8D+251)cost=e2t(−1+8D+251)cost=e2t(24+8D1)cost=e2t(242−64D224−8D)cost=e2t(576+6424cost−8D(cost))=e2t(64024cost+8sint)=e2t(803cost+sint)
The general solution is y=e−2t(c1cos3t+c2sin3t)+80e2t(3cost+sint)
Comments