Question #297970

solve by method of variation of parameter y'' + y = sec x


1
Expert's answer
2022-02-15T17:32:09-0500

Solution:

The corresponding homogeneous differential equation is



y+y=0y''+y=0

Characteristic (auxiliary) equation



r2+1=0r^2+1=0r=±ir=\pm i

The general solution of the homogeneous differential equation is



yh=c1cosx+c2sinxy_h=c_1 \cos x+c_2\sin xy=c1cosxc1sinx+c2sinx+c2cosxy'=c_1 '\cos x-c_1 \sin x+c_2'\sin x+c_2\cos x

If


c1cosx+c2sinx=0,c_1 '\cos x+c_2'\sin x=0,

then



y=c1sinxc1cosx+c2cosxc2sinxy''=-c_1'\sin x-c_1\cos x+c_2'\cos x-c_2\sin x

Substitute



c1sinxc1cosx+c2cosxc2sinx-c_1'\sin x-c_1\cos x+c_2'\cos x-c_2\sin x+c1cosx+c2sinx=1cosx+c_1 \cos x+c_2\sin x=\dfrac{1}{\cos x}

We have



c1cosx+c2sinx=0,c_1 '\cos x+c_2'\sin x=0,c1sinx+c2cosx=1cosx-c_1'\sin x+c_2'\cos x=\dfrac{1}{\cos x}





c1=sinxcosxc2c_1'=-\dfrac{\sin x}{\cos x}c_2'sin2xcosxc2+c2cosx=1cosx\dfrac{\sin^2 x}{\cos x}c_2'+c_2'\cos x=\dfrac{1}{\cos x}





c1=sinxcosxc_1'=-\dfrac{\sin x}{\cos x}c2=1c_2'=1

Integrate



c1=sinxcosxdx=ln(cosx)+C1c_1=-\int \dfrac{\sin x}{\cos x}dx=\ln (|\cos x|)+C_1c2=dx=x+C2c_2=\int dx=x+C_2

The general solution of the non-homogeneous differential equation is



yh=ln(cosx)cosx+xsinx+C1cosx+C2sinxy_h=\ln (|\cos x|) \cos x+x\sin x+C_1\cos x+C_2\sin x

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS