Y=c1e^x+c2e^2x y"-2y+3y=0
To check whether "y=c_1e^x+c_2e^{2x}" is the solution of "y''-2y+3y=0"...(i)
Now, "y=c_1e^x+c_2e^{2x}"
"y'=c_1e^x+2c_2e^{2x}\n\\\\ y''=c_1e^x+4c_2e^{2x}"
Put these in LHS of (i),
"=y''-2y+3y\n\\\\=c_1e^x+4c_2e^{2x}-2(c_1e^x+2c_2e^{2x})+3(c_1e^x+c_2e^{2x})\n\\\\=2c_1e^x+3c_2e^{2x}\n\\\\\\ne0"
So, it is not the solution of given D.E.
Comments
Leave a comment