dxdy−5y=e−2xy−2⟹y2dxdy−5y3=e−2x⟹3y2dxdy−15y3=3e−2x Let, z=y∧3dxdz=3y2⟹dxdz−15z=3e−2x…(i)
Now this differential equation is of the form
dxdy+P(x)y=Q(x)
here, P(x)=−15
Q(x)=3e−2x
So,
Integrating Factor =e∫P(x)dx=e∫−15dx=e−15x
Multiplying Integrating factor to the both sides of equation (i),
e−15xdxdz−15e−15xz=3e−17x
⟹dxd(e−15xz)=3e−17x⟹d(e−15xz)=3e−17xdx
Integrating both sides,
⟹∫d(e−15xz)=∫3e−17xdx⟹e−15xz=−173e−17x+C⟹y3e−15x=−173e−17x+C
Comments