Question #297100

dy/dx = 5y + (e ^−2x)(y^−2)


1
Expert's answer
2022-02-18T12:38:32-0500

Solution:

dydx5y=e2xy2y2dydx5y3=e2x3y2dydx15y3=3e2x Let, z=y3dzdx=3y2dzdx15z=3e2x(i)\begin{aligned} &\frac{d y}{d x}-5 y=e^{-2 x} y^{-2} \\ &\Longrightarrow y^{2} \frac{d y}{d x}-5 y^{3}=e^{-2 x} \\ &\Longrightarrow 3 y^{2} \frac{d y}{d x}-15 y^{3}=3 e^{-2 x} \\ &\text { Let, } \mathrm{z}=\mathrm{y}^{\wedge} 3 \\ &\frac{d z}{d x}=3 y^{2} \\ &\Longrightarrow \frac{d z}{d x}-15 z=3 e^{-2 x} \ldots(i) \end{aligned}

Now this differential equation is of the form

dydx+P(x)y=Q(x)\frac{d y}{d x}+P(x) y=Q(x)

here, P(x)=15P(x)=-15

Q(x)=3e2xQ(x)=3 e^{-2 x}

So,

 Integrating Factor =eP(x)dx=e15dx=e15x\text { Integrating Factor }=e^{\int P(x) d x}=e^{\int-15 d x}=e^{-15 x}

Multiplying Integrating factor to the both sides of equation (i),

 e15xdzdx15e15xz=3e17xe^{-15 x} \frac{d z}{d x}-15 e^{-15 x} z=3 e^{-17 x}

d(e15xz)dx=3e17xd(e15xz)=3e17xdx\begin{aligned} &\Longrightarrow \frac{d\left(e^{-15 x} z\right)}{d x}=3 e^{-17 x} \\ &\Longrightarrow d\left(e^{-15 x} z\right)=3 e^{-17 x} d x \end{aligned}

Integrating both sides,

d(e15xz)=3e17xdxe15xz=317e17x+Cy3e15x=317e17x+C\begin{aligned} &\Longrightarrow \int d\left(e^{-15 x} z\right)=\int 3 e^{-17 x} d x \\ &\Longrightarrow e^{-15 x} z=-\frac{3}{17} e^{-17 x}+C \\ &\Longrightarrow y^{3} e^{-15 x}=-\frac{3}{17} e^{-17 x}+C \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS