Let us find the particular solution of the differential equation ( 1 − cos ( 2 t ) ) d x d t = x sin ( 2 t ) (1 − \cos(2t))\frac{ dx}{dt} = x \sin(2t) ( 1 − cos ( 2 t )) d t d x = x sin ( 2 t ) given that x ( π 2 ) = 2. x(\frac{π}2) = 2. x ( 2 π ) = 2.
This equation is equivalent to d x x = sin ( 2 t ) d t 1 − cos ( 2 t ) \frac{ dx}{x} = \frac{\sin(2t)dt}{1 − \cos(2t)} x d x = 1 − c o s ( 2 t ) s i n ( 2 t ) d t , and hence ∫ d x x = ∫ sin ( 2 t ) d t 1 − cos ( 2 t ) \int\frac{ dx}{x} = \int\frac{\sin(2t)dt}{1 − \cos(2t)} ∫ x d x = ∫ 1 − c o s ( 2 t ) s i n ( 2 t ) d t .
It follows that
ln ∣ x ∣ = 1 2 ∫ d ( 1 − cos ( 2 t ) ) 1 − cos ( 2 t ) = 1 2 ln ∣ 1 − cos ( 2 t ) ∣ + ln ∣ C ∣ = ln ∣ C 1 − cos ( 2 t ) ∣ . \ln|x|= \frac{1}2\int\frac{d(1 − \cos(2t))}{1 − \cos(2t)}=\frac{1}2\ln|1 − \cos(2t)|+\ln|C|=\ln|C\sqrt{1 − \cos(2t)}|. ln ∣ x ∣ = 2 1 ∫ 1 − c o s ( 2 t ) d ( 1 − c o s ( 2 t )) = 2 1 ln ∣1 − cos ( 2 t ) ∣ + ln ∣ C ∣ = ln ∣ C 1 − cos ( 2 t ) ∣.
We conclude that x ( t ) = C 1 − cos ( 2 t ) x(t)=C\sqrt{1 − \cos(2t)} x ( t ) = C 1 − cos ( 2 t ) is the general solution.
If x ( π 2 ) = 2 x(\frac{π}2) = 2 x ( 2 π ) = 2 then 2 = C 1 − cos π = C 2 . 2=C\sqrt{1-\cos\pi}=C\sqrt{2}. 2 = C 1 − cos π = C 2 . It follows that C = 2 , C=\sqrt{2}, C = 2 , and thus the particular solution is
x ( t ) = 2 1 − cos ( 2 t ) = 2 − 2 cos ( 2 t ) . x(t)=\sqrt{2}\sqrt{1 − \cos(2t)}=\sqrt{2 − 2\cos(2t)}. x ( t ) = 2 1 − cos ( 2 t ) = 2 − 2 cos ( 2 t ) .
Comments