Question #297892

find a power series solution of xy'=y


1
Expert's answer
2022-02-15T18:18:35-0500

By Power Series Method, the solution of the differential equation is

y=c0n=0(x22)nn!=c0ex22,y=c_{0} \sum_{n=0}^{\infty} \frac{\left(\frac{x^{2}}{2}\right)^{n}}{n !}=c_{0} e^{\frac{x^{2}}{2}}, where c0c_{0} is any constant.

Let us look at some details.

 Let y=n=0cnxn\text { Let } y=\sum_{n=0}^{\infty} c_{n} x^{n}

By taking the derivative term by term,

y=n=1ncnxn1y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1}

Now, let us look at the differential equation.

y=xyy^{\prime}=x y

by substituting the above power series in the equation,

n=1ncnxn1=xn=0cnxn\Rightarrow \sum_{n=1}^{\infty} n c_{n} x^{n-1}=x \cdot \sum_{n=0}^{\infty} c_{n} x^{n}  

by pulling the first term from the summation on the left,

c1+n=2ncnxn1=n=0cnxn+1\Rightarrow c_{1}+\sum_{n=2}^{\infty} n c_{n} x^{n-1}=\sum_{n=0}^{\infty} c_{n} x^{n+1}

by shifting the indices of the summation on the left by 2 ,

c1+n=0(n+2)cn+2xn+1=n=0cnxn+1\Rightarrow c_{1}+\sum_{n=0}^{\infty}(n+2) c_{n+2} x^{n+1}=\sum_{n=0}^{\infty} c_{n} x^{n+1}

By matching coefficients,

c1=0c_{1}=0 and (n+2)cn+2=cncn+2=cnn+2(n+2) c_{n+2}=c_{n} \Rightarrow c_{n+2}=\frac{c_{n}}{n+2}

Let us observe the odd terms.

c3=c13=03=0c5=c35=05=0...c2n+1=0\begin{aligned} &c_{3}=\frac{c_{1}}{3}=\frac{0}{3}=0 \\ &c_{5}=\frac{c_{3}}{5}=\frac{0}{5}=0\\ &.\\ &.\\ &.\\ &c_{2 n+1}=0 \end{aligned}

Let us observe the even terms.

c2=c02c4=c24=c042=c0222!c6=c46=c0642=c0233!c2n=c02nn!\begin{aligned} &c_{2}=\frac{c_{0}}{2} \\ &c_{4}=\frac{c_{2}}{4}=\frac{c_{0}}{4 \cdot 2}=\frac{c_{0}}{2^{2} \cdot 2 !} \\ &c_{6}=\frac{c_{4}}{6}=\frac{c_{0}}{6 \cdot 4 \cdot 2}=\frac{c_{0}}{2^{3} \cdot 3 !} &c_{2 n}=\frac{c_{0}}{2^{n} \cdot n !} \end{aligned}

Hence,

y=n=0c02nn!x2n=c0n=0x2n2nn!=c0n=0(x22)nn!=c0ex22y=\sum_{n=0}^{\infty} \frac{c_{0}}{2^{n} \cdot n !} x^{2 n}=c_{0} \sum_{n=0}^{\infty} \frac{\frac{x^{2 n}}{2^{n}}}{n !}=c_{0} \sum_{n=0}^{\infty} \frac{\left(\frac{x^{2}}{2}\right)^{n}}{n !}=c_{0} e^{\frac{x^{2}}{2}}

 (by replacing x by x22 in ex=n=0xnn! ) \text { (by replacing } x \text { by } \frac{x^{2}}{2} \text { in } e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !} \text { ) }

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS