Given the initial value problem x 0 1 − 2x1 − 3x2 = 0 x 0 2 + x1 + x2 = 0 x1(0) = √ 3, x2(0) = 0 , find x2(t). (a) x2(t) = e t 2 sin √ 3 2 t (b) x2(t) = e t cos 1 2 t + sin 1 2 t (c) x2(t) = −2e t 2 sin √ 3 2 t (d) x2(t) = 2e t 2 cos √ 3 2 t + sin √ 3 2 t ! (e) x2(t) = 2e t 2 sin √ 3 2 t
"x_1'\u2212 2x_1 \u2212 3x_2 = 0"
"x_2' + x_1 + x_2 = 0"
"x_1(0) = \\sqrt3,x_2(0) = 0"
from second equation:
"x_1=-x_2'-x_2"
"x_1'=-x_2''-x_2'"
then:
"-x_2''-x_2'-2(-x_2'-x_2)-3x_2=0"
"x_2''-x_2'+x_2=0"
characteristic equation:
"k^2-k+1=0"
"k=\\frac{1\\pm \\sqrt{1-4}}{2}=1\/2\\pm i\\sqrt 3\/2"
"x_2=e^{t\/2}(c_1cos\\frac{\\sqrt 3}{2}t+c_2sin\\frac{\\sqrt 3}{2}t)"
"x_2(0)=c_1=0"
"x_2'=\\frac{e^{t\/2}}{2}c_2sin\\frac{\\sqrt 3}{2}t+\\frac{e^{t\/2}\\sqrt 3}{2}c_2cos\\frac{\\sqrt 3}{2}t"
"x_1=-\\frac{e^{t\/2}}{2}c_2sin\\frac{\\sqrt 3}{2}t-\\frac{e^{t\/2}\\sqrt 3}{2}c_2cos\\frac{\\sqrt 3}{2}t-e^{t\/2}c_2sin\\frac{\\sqrt 3}{2}t"
"x_1(0)=-\\frac{\\sqrt{3}}{2}c_2=\\sqrt 3"
"c_2=-2"
then:
"x_2(t)=-2e^{t\/2}sin\\frac{\\sqrt 3}{2}t"
Answer: (c)
Comments
Leave a comment