The corresponding homogeneous equation is
(D2+4)y=0 Auxiliary equation
r2+4=0
r1=2i,r2=−2iThe general solution of the homogeneous equation is
yh=c1cos(2x)+c2sin(2x) Variation of Parameters
y′=c1′cos(2x)−2c1sin(2x)+c2′sin(2x)+2c2cos(2x) Let
c1′cos(2x)+c2′sin(2x)=0Then
y′=−2c1sin(2x)+2c2cos(2x)
y′′=−2c1′sin(2x)−4c1cos(2x)
+2c2′cos(2x)−4c2sin(2x) Substitute
−2c1′sin(2x)−4c1cos(2x)
+2c2′cos(2x)−4c2sin(2x)
+4c1cos(2x)+4c2sin(2x)
=4sec(2x)csc(2x)
⎩⎨⎧c1′cos(2x)+c2′sin(2x)=0−2c1′sin(2x)+2c2′cos(2x)=4sec(2x)csc(2x)
c2′=−sin(2x)cos(2x)c1′
−c1′sin(2x)−sin(2x)cos2(2x)c1′=sin(2x)cos(2x)2
c1′=−cos(2x)2 Integrate
c1=−∫cos(2x)2dx
∫cos(2x)2dx=∫cos2(2x)2cos(2x)dx
=∫1−sin2(2x)2cos(2x)dx
=∫1−sin(2x)cos(2x)dx+∫1+sin(2x)cos(2x)dx
=−21∫1−sin(2x)d(1−sin(2x))dx+21∫1+sin(2x)d(1+sin(2x))dx
=−21ln(∣1−sin(2x)∣)+21ln(∣1+sin(2x)∣)+C3
=21ln1−sin2(2x)(1+sin(2x))2+C3
=ln(1+sin(2x))−ln(∣cos(2x)∣)+C3
c1=−ln(1+sin(2x))+ln(∣cos(2x)∣)−C3
c2′=sin(2x)2 Integrate
c2=∫sin(2x)2dx
∫sin(2x)2dx=∫sin2(2x)2sin(2x)dx
=∫1−cos2(2x)2sin(2x)dx
=∫1−cos(2x)sin(2x)dx+∫1+cos(2x)sin(2x)dx
=21∫1−cos(2x)d(1−cos(2x))dx−21∫1+cos(2x)d(1+cos(2x))dx
=21ln(∣1−cos(2x)∣)−21ln(∣1+cos(2x)∣)+C4
=−21ln1−cos2(2x)(1+cos(2x))2+C4
=−ln(1+cos(2x))+ln(∣sin(2x)∣)+C4
c2=−ln(1+cos(2x))+ln(∣sin(2x)∣)+C4
The general solution of the homogeneous equation is
yh=c5cos(2x)+c6sin(2x)
+(−ln(1+sin(2x))+ln(∣cos(2x)∣))cos(2x)
+(−ln(1+cos(2x))+ln(∣sin(2x)∣))sin(2x)
Comments