Question #279080

(D^2 + 4) y = 4 sec 2x csc 2x


1
Expert's answer
2021-12-14T03:24:59-0500

The corresponding homogeneous equation is


(D2+4)y=0(D^2+4)y=0

Auxiliary equation


r2+4=0r^2+4=0

r1=2i,r2=2ir_1=2i, r_2=-2i

The general solution of the homogeneous equation is


yh=c1cos(2x)+c2sin(2x)y_h=c_1\cos(2x)+c_2\sin(2x)

Variation of Parameters


y=c1cos(2x)2c1sin(2x)+c2sin(2x)+2c2cos(2x)y'=c_1'\cos(2x)-2c_1\sin(2x)+c_2'\sin(2x)+2c_2\cos(2x)

Let

c1cos(2x)+c2sin(2x)=0c_1'\cos(2x)+c_2'\sin(2x)=0

Then


y=2c1sin(2x)+2c2cos(2x)y'=-2c_1\sin(2x)+2c_2\cos(2x)

y=2c1sin(2x)4c1cos(2x)y''=-2c_1'\sin(2x)-4c_1\cos(2x)

+2c2cos(2x)4c2sin(2x)+2c_2'\cos(2x)-4c_2\sin(2x)

Substitute


2c1sin(2x)4c1cos(2x)-2c_1'\sin(2x)-4c_1\cos(2x)

+2c2cos(2x)4c2sin(2x)+2c_2'\cos(2x)-4c_2\sin(2x)

+4c1cos(2x)+4c2sin(2x)+4c_1\cos(2x)+4c_2\sin(2x)

=4sec(2x)csc(2x)=4\sec(2x)\csc(2x)

{c1cos(2x)+c2sin(2x)=02c1sin(2x)+2c2cos(2x)=4sec(2x)csc(2x)\begin{cases} c_1'\cos(2x)+c_2'\sin(2x)=0\\ \\ -2c_1'\sin(2x)+2c_2'\cos(2x)=4\sec(2x)\csc(2x) \end{cases}

c2=cos(2x)sin(2x)c1c_2'=-\dfrac{\cos(2x)}{\sin(2x)}c_1'

c1sin(2x)cos2(2x)sin(2x)c1=2sin(2x)cos(2x)-c_1'\sin(2x)-\dfrac{\cos^2(2x)}{\sin(2x)}c_1'=\dfrac{2}{\sin(2x)\cos(2x)}

c1=2cos(2x)c_1'=-\dfrac{2}{\cos(2x)}

Integrate


c1=2cos(2x)dxc_1=-\int \dfrac{2}{\cos(2x)}dx

2cos(2x)dx=2cos(2x)cos2(2x)dx\int \dfrac{2}{\cos(2x)}dx=\int \dfrac{2\cos(2x)}{\cos^2(2x)}dx

=2cos(2x)1sin2(2x)dx=\int \dfrac{2\cos(2x)}{1-\sin^2(2x)}dx

=cos(2x)1sin(2x)dx+cos(2x)1+sin(2x)dx=\int \dfrac{\cos(2x)}{1-\sin(2x)}dx+\int \dfrac{\cos(2x)}{1+\sin(2x)}dx

=12d(1sin(2x))1sin(2x)dx+12d(1+sin(2x))1+sin(2x)dx=-\dfrac{1}{2}\int \dfrac{d(1-\sin(2x))}{1-\sin(2x)}dx+\dfrac{1}{2}\int \dfrac{d(1+\sin(2x))}{1+\sin(2x)}dx

=12ln(1sin(2x))+12ln(1+sin(2x))+C3=-\dfrac{1}{2}\ln(|1-\sin(2x)|)+\dfrac{1}{2}\ln(|1+\sin(2x)|)+C_3

=12ln(1+sin(2x))21sin2(2x)+C3=\dfrac{1}{2}\ln\dfrac{(1+\sin(2x))^2}{1-\sin^2(2x)}+C_3

=ln(1+sin(2x))ln(cos(2x))+C3=\ln(1+\sin(2x))-\ln(|\cos(2x)|)+C_3

c1=ln(1+sin(2x))+ln(cos(2x))C3c_1=-\ln(1+\sin(2x))+\ln(|\cos(2x)|)-C_3

c2=2sin(2x)c_2'=\dfrac{2}{\sin(2x)}

Integrate


c2=2sin(2x)dxc_2=\int \dfrac{2}{\sin(2x)}dx

2sin(2x)dx=2sin(2x)sin2(2x)dx\int \dfrac{2}{\sin(2x)}dx=\int \dfrac{2\sin(2x)}{\sin^2(2x)}dx

=2sin(2x)1cos2(2x)dx=\int \dfrac{2\sin(2x)}{1-\cos^2(2x)}dx

=sin(2x)1cos(2x)dx+sin(2x)1+cos(2x)dx=\int \dfrac{\sin(2x)}{1-\cos(2x)}dx+\int \dfrac{\sin(2x)}{1+\cos(2x)}dx

=12d(1cos(2x))1cos(2x)dx12d(1+cos(2x))1+cos(2x)dx=\dfrac{1}{2}\int \dfrac{d(1-\cos(2x))}{1-\cos(2x)}dx-\dfrac{1}{2}\int \dfrac{d(1+\cos(2x))}{1+\cos(2x)}dx

=12ln(1cos(2x))12ln(1+cos(2x))+C4=\dfrac{1}{2}\ln(|1-\cos(2x)|)-\dfrac{1}{2}\ln(|1+\cos(2x)|)+C_4

=12ln(1+cos(2x))21cos2(2x)+C4=-\dfrac{1}{2}\ln\dfrac{(1+\cos(2x))^2}{1-\cos^2(2x)}+C_4

=ln(1+cos(2x))+ln(sin(2x))+C4=-\ln(1+\cos(2x))+\ln(|\sin(2x)|)+C_4

c2=ln(1+cos(2x))+ln(sin(2x))+C4c_2=-\ln(1+\cos(2x))+\ln(|\sin(2x)|)+C_4

The general solution of the homogeneous equation is


yh=c5cos(2x)+c6sin(2x)y_h=c_5\cos(2x)+c_6\sin(2x)


+(ln(1+sin(2x))+ln(cos(2x)))cos(2x)+\bigg(-\ln(1+\sin(2x))+\ln(|\cos(2x)|)\bigg)\cos(2x)

+(ln(1+cos(2x))+ln(sin(2x)))sin(2x)+\bigg(-\ln(1+\cos(2x))+\ln(|\sin(2x)|)\bigg)\sin(2x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS