Solve:
dydx−2y=5y2.\frac{dy}{dx}-2y=5y^2.dxdy−2y=5y2.
dy5y2+2y=dx.\frac{dy}{5y^2+2y}=dx.5y2+2ydy=dx.
∫dy5y2+2y=∫dx.\int{\frac{dy}{5y^2+2y}}=\int dx.∫5y2+2ydy=∫dx.
∫(12y−52(5y+2))dy=∫dx.\int(\frac{1}{2y}-\frac{5}{2(5y+2)})dy=\int dx.∫(2y1−2(5y+2)5)dy=∫dx.
12lny5y+2=x+C.\frac{1}{2}\ln{\frac{y}{5y+2}}=x+C.21ln5y+2y=x+C.
y5y+2=Ce2x.\frac{y}{5y+2}=Ce^{2x}.5y+2y=Ce2x.
y=2e2x5(C−e2x)=25(Ce−2x−1).y=\frac{2e^{2x}}{5(C-e^{2x})}=\frac{2}{5(Ce^{-2x}-1)}.y=5(C−e2x)2e2x=5(Ce−2x−1)2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment