Differential equation,M(x,y)dx+N(x,y)=0then, if partial derivative of M w.r.t y is equal to the partial derivative of N w.r.t x. —(1)1.dxdy=−bx−cyax−by(ax−by)dx+(bx−cy)dy=0Now,My=−bNx=bThis is not exact.2.(2x+4y)dx+(2x−2y)dy=0Now,My=4Nx=2This is not exact.3.(3x2−2xy+2)dx+(6y2−x2+3)dy=0Now,My=−2xNx=−2xThis is an exact differential equation.Then the solution is given by,∫(3x2−2xy+2)dx+∫(6y2−x2+3)dy=cx3−x2y+2x+2y3+3y=c4.(ycosx+2xey)dx+(sinx+x2ey−1)dy=0Now,My=cosx+2xeyNx=cosx+2xeyThis is an exact differential equation.Then the solution is given by,∫(ycosx+2xey)dx+∫(sinx+x2ey−1)dy=cysinx+x2ey−y=c
Comments