Question #271461

Determine whether each of the equations is exact. If it is exact, find the solution.

  1. (dy/dx)=-(ax-by/bx-cy)
  2. (2x+4y)+(2x-2y)y'=0
  3. (3x2-2xy+2)+(6y2-x2+3)y'=0
  4. (ycosx+2xey)+(sinx+x2ey-1)y'=0
1
Expert's answer
2021-11-28T17:15:30-0500

Differential equation,M(x,y)dx+N(x,y)=0then, if partial derivative of M w.r.t y is equal to the partial derivative of N w.r.t x. —(1)1.dydx=axbybxcy(axby)dx+(bxcy)dy=0Now,My=bNx=bThis is not exact.2.(2x+4y)dx+(2x2y)dy=0Now,My=4Nx=2This is not exact.3.(3x22xy+2)dx+(6y2x2+3)dy=0Now,My=2xNx=2xThis is an exact differential equation.Then the solution is given by,(3x22xy+2)dx+(6y2x2+3)dy=cx3x2y+2x+2y3+3y=c4.(ycosx+2xey)dx+(sinx+x2ey1)dy=0Now,My=cosx+2xeyNx=cosx+2xeyThis is an exact differential equation.Then the solution is given by,(ycosx+2xey)dx+(sinx+x2ey1)dy=cysinx+x2eyy=c\text{Differential equation,}\\ M(x,y)dx+N(x,y)=0\\ \text{then, if partial derivative of M w.r.t y is equal to the partial derivative of N w.r.t x. ---(1)}\\ 1.\\ \frac{dy}{dx}=-\frac{ax-by}{bx-cy}\\ (ax-by)dx+(bx-cy)dy=0\\ Now,\\ M_y=-b\\ N_x=b\\ \text{This is not exact.}\\ 2.\\ (2x+4y)dx+(2x-2y)dy=0\\ Now,\\ M_y=4\\ N_x=2\\ \text{This is not exact.}\\ 3.\\ (3x^2-2xy+2)dx+(6y^2-x^2+3)dy=0\\ Now,\\ M_y=-2x\\ N_x=-2x\\ \text{This is an exact differential equation.}\\ \text{Then the solution is given by,}\\ \int(3x^2-2xy+2)dx+\int(6y^2-x^2+3)dy=c\\ x^3-x^2y+2x+2y^3+3y=c\\ 4.\\ (ycosx+2xe^y)dx+(sinx+x^2e^y-1)dy=0 Now,\\ M_y=cosx+2xe^y\\ N_x=cosx+2xe^y\\ \text{This is an exact differential equation.}\\ \text{Then the solution is given by,}\\ \int(ycosx+2xe^y)dx+\int(sinx+x^2e^y-1)dy=c\\ ysinx+x^2e^y-y=c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS