x2dx2d2y+xdxdy−9y=48x5
D(D−1)y+Dy−9y=48x5
(D2−D+D−9)y=48x5
(D2−9)y=48x5
A.E;
m2−9=0⟹m=3,−3
Put x=ez∴z=ln x
C.F=C1e−3z+C2e3z
P.I=(D2−9)1⋅48e5z
=((5)2−9)1∗48⋅e5z=1648⋅e5z
P.I=3e5z
Complete solution;
y=C.F+P.I
y=C1e−3z+C2e3z+3e5z
y=C1e−3ln x+C2e3ln x+3e5ln x
y=x3C1+C2x3+3x5 , where C1 and C2 are arbitrary constants
Comments