Question #271384

Solve


x ^ 2 * (d ^ 2 * y)/(dx) + x * (dy)/(dx) - 9y = 48x ^ 5

1
Expert's answer
2021-12-28T11:09:58-0500

x2d2ydx2+xdydx9y=48x5x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}-9y=48x^5

D(D1)y+Dy9y=48x5D(D-1)y+Dy-9y=48x^5

(D2D+D9)y=48x5(D^2-D+D-9)y=48x^5

(D29)y=48x5(D^2-9)y=48x^5

A.E;

m29=0    m=3,3m^2-9=0\implies m=3,-3

Put x=ezz=ln xx=e^z\therefore z=ln\ x

C.F=C1e3z+C2e3zC_1e^{-3z}+C_2e^{3z}

P.I=1(D29)48e5zP.I=\frac{1}{(D^2-9)}\cdot48e^{5z}

=148((5)29)e5z=4816e5z=\frac{1*48}{((5)^2-9)}\cdot e^{5z}=\frac{48}{16}\cdot e^{5z}

P.I=3e5zP.I=3e^{5z}

Complete solution;

y=C.F+P.I

y=C1e3z+C2e3z+3e5zy=C_1e^{-3z}+C_2e^{3z}+3e^{5z}

y=C1e3ln x+C2e3ln x+3e5ln xy=C_1e^{-3ln\ x}+C_2e^{3ln\ x}+3e^{5ln\ x}

y=C1x3+C2x3+3x5y=\frac{C_1}{x^3}+C_2x^3+3x^{5} , where C1 and C2 are arbitrary constants


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS