Question #271385

Solve




x ^ 2 * (d ^ 2 * y)/(d * x ^ 2) - 2x * (dy)/(dx) - 4y = x ^ 2 + 2 * log x

1
Expert's answer
2021-11-30T13:59:24-0500
x2y2xy4y=x2+2lnxx^2y''-2xy'-4y=x^2+2\ln x

The corresponding homogeneous differental equation


x2y2xy4y=0x^2y''-2xy'-4y=0

Auxiliary equation


x2(xr)2x(xr)4xr=0x^2(x^r)''-2x(x^r)'-4x^r=0

xr(r(r1)2r4)=0x^r(r(r-1)-2r-4)=0

r23r4=0r^2-3r-4=0

(r+1)(r4)=0(r+1)(r-4)=0

r1=1,r2=4r_1=-1, r_2=4

The general solution of the homogeneous differential equation is


yh=c1x+c2x4y_h=\dfrac{c_1}{x}+c_2x^4

Find the particular solution of the non-homogeneous differential equation


yp=Ax2+Bx+C+Dlnxy_p=Ax^2+Bx+C+D\ln x

yp=2Ax+B+Dxy_p'=2Ax+B+\dfrac{D}{x}

yp=2ADx2y_p''=2A-\dfrac{D}{x^2}

Substitute


2Ax2D4Ax22Bx2D2Ax^2-D-4Ax^2-2Bx-2D

4Ax24Bx4C4Dlnx=x2+2lnx-4Ax^2-4Bx-4C-4D\ln x=x^2+2\ln x

6A=1-6A=1

6B=0-6B=0

3D4C=0-3D-4C=0

D=12D=-\dfrac{1}{2}

A=16,B=0,C=38A=-\dfrac{1}{6}, B=0, C=\dfrac{3}{8}

yp=16x2+3812lnxy_p=-\dfrac{1}{6}x^2+\dfrac{3}{8}-\dfrac{1}{2}\ln x

The general solution of the given non-homogeneous differential equation is


y=c1x+c2x416x2+3812lnxy=\dfrac{c_1}{x}+c_2x^4-\dfrac{1}{6}x^2+\dfrac{3}{8}-\dfrac{1}{2}\ln x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS