The given differential equation can be written as y′′+9y−9x=0Next, we take the laplace transform of the differential equationL(y′′)=S2L(y)−Sy(0)−y′(0)L(y′)=SL(y)−y(0)L(y)=y⟹S2y−Sy(0)−y′(0)+9y=s29y(s2+9)−s−5=s29y(s2+9)=s29+s+5=s2(s2+9)s3+5s2+9−(1)Resolving (1) into partial fractions, where s2(s2+9)s3+5s2+9=SA+S2B+S2+9CS+D⟹s3+5s2+9=AS(S2+9)+B(S2+9)+S2(CS+D)Comparing co-efficients, we have that, A=0, B=1, C=1 and D=4⟹S21+S2+9S+4Taking the inverse Laplace Transform, we havey=x+cos3x+34sin3x
Comments
Leave a comment