Question #221683

A certain particle falls under gravity in a resisting medium whose resistance varies with velocity.Find the relation between distance and velocity if the initially the particle starts from rest.


1
Expert's answer
2021-08-04T16:34:40-0400

If v is the velocity of the particle falling undergravity, then the equation of motion of the movingparticle by Newton’s second law is given bymgmR=mawhere R represents the resistance of the resisting medium Since R is proportional to v,R=kvmgmkv=magkv=aa=dvdtUsing chain rule,a=dvds×dsdta=dvds×va=vdvdsHence,gkv=vdvdsds=(vgkv)dvBy separating into partial fractions, we haveds=(1k+gk(gkv))dvds=dvk+gkdvgkvIntegrating, we have,s+c=vk+gk(1k)ln(gkv)s+c=vkgk2ln(gkv)Initially, s=0,v=0.Hence,c=gk2ln(g)Hence,sgk2ln(g)=vkgk2ln(gkv)s=vkgk2ln(gkvg)s=(vk+gk2ln(gkvg)\textsf{If } v \textsf{ is the velocity of the particle falling under}\\ \textsf{gravity, then the equation of motion of the moving}\\ \textsf{particle by Newton's second law is given by}\\ \hspace{0.1cm}\\ mg-mR=ma\\ \hspace{0.1cm}\\ \textsf{where } R\textsf{ represents the resistance of the }\\ \textsf{resisting medium}\\ \hspace{0.1cm}\\ \textsf{ Since}\textsf{ R }\textsf{is proportional to } v,\\\hspace{0.1cm}\\ R=kv\\\hspace{0.1cm}\\ mg-mkv=ma\\ g-kv=a\\ \hspace{0.1cm}\\ a=\frac{\mathrm{d}v}{\mathrm{d}t}\\ \textsf{Using chain rule,}\\ a=\frac{\mathrm{d}v}{\mathrm{d}s}\times\frac{\mathrm{d}s}{\mathrm{d}t}\\ a=\frac{\mathrm{d}v}{\mathrm{d}s}\times v\\ a=v\frac{\mathrm{d}v}{\mathrm{d}s}\\ \hspace{0.1cm}\\ \textsf{Hence,}\\ g-kv=v\frac{\mathrm{d}v}{\mathrm{d}s}\\ \mathrm{d}s=(\frac{v}{g-kv})\mathrm{d}v\\ \textsf{By separating into partial fractions, we have}\\ \mathrm{d}s=(\frac{-1}k+\frac{g}{k(g-kv)})\mathrm{d}v\\ \mathrm{d}s=\frac{-\mathrm{d}v}{k}+\frac{g}{k}\frac{\mathrm{d}v}{g-kv}\\\hspace{0.1cm}\\ \textsf{Integrating, we have,}\\ \hspace{0.1cm}\\ s+c=\frac{-v}{k}+\frac{g}{k}(\frac{-1}{k})ln(g-kv)\\ s+c=\frac{-v}{k}-\frac{g}{k^2}ln(g-kv)\\ \hspace{0.1cm}\\ \textsf{Initially, } s=0, v=0.\, \textsf{Hence,}\\\hspace{0.1cm}\\ c=\frac{-g}{k^2}ln(g)\\\hspace{0.1cm}\\ \textsf{Hence,}\hspace{0.1cm}\\ s-\frac{g}{k^2}ln(g)=\frac{-v}{k}-\frac{g}{k^2}ln(g-kv)\\ s=-\frac{v}{k}-\frac{g}{k^2}ln(\frac{g-kv}{g})\\ s=-(\frac{v}{k}+\frac{g}{k^2}ln(\frac{g-kv}{g})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS