2021-07-21T04:06:20-04:00
Xdx+ydy=a^2.xdy-ydx/x^2+y^2
1
2021-07-22T06:14:24-0400
x d x + y d y = a 2 ( x d y − y d x y ) x 2 + y 2 xdx+ydy=\dfrac{a^2(xdy-ydxy)}{x^2+y^2} x d x + y d y = x 2 + y 2 a 2 ( x d y − y d x y )
1 2 d ( x 2 + y 2 ) = a 2 ( x d y − y d x x 2 ) x 2 + y 2 x 2 \dfrac{1}{2}d(x^2+y^2)=\dfrac{a^2(\dfrac{xdy-ydx}{x^2})}{\dfrac{x^2+y^2}{x^2}} 2 1 d ( x 2 + y 2 ) = x 2 x 2 + y 2 a 2 ( x 2 x d y − y d x )
d ( x 2 + y 2 ) = 2 a 2 d ( y x ) 1 + ( y x ) 2 d(x^2+y^2)=\dfrac{2a^2d(\dfrac{y}{x})}{1+(\dfrac{y}{x})^2} d ( x 2 + y 2 ) = 1 + ( x y ) 2 2 a 2 d ( x y ) Integrate
x 2 + y 2 = 2 a 2 tan − 1 ( y x ) + C x^2+y^2=2a^2\tan^{-1}(\dfrac{y}{x})+C x 2 + y 2 = 2 a 2 tan − 1 ( x y ) + C Or
x 2 + y 2 − 2 a 2 tan − 1 ( y x ) = C x^2+y^2-2a^2\tan^{-1}(\dfrac{y}{x})=C x 2 + y 2 − 2 a 2 tan − 1 ( x y ) = C
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments