Answer to Question #219482 in Differential Equations for Sam

Question #219482
Xdx+ydy=a^2.xdy-ydx/x^2+y^2
1
Expert's answer
2021-07-22T06:14:24-0400
xdx+ydy=a2(xdyydxy)x2+y2xdx+ydy=\dfrac{a^2(xdy-ydxy)}{x^2+y^2}

12d(x2+y2)=a2(xdyydxx2)x2+y2x2\dfrac{1}{2}d(x^2+y^2)=\dfrac{a^2(\dfrac{xdy-ydx}{x^2})}{\dfrac{x^2+y^2}{x^2}}

d(x2+y2)=2a2d(yx)1+(yx)2d(x^2+y^2)=\dfrac{2a^2d(\dfrac{y}{x})}{1+(\dfrac{y}{x})^2}

Integrate


x2+y2=2a2tan1(yx)+Cx^2+y^2=2a^2\tan^{-1}(\dfrac{y}{x})+C

Or


x2+y22a2tan1(yx)=Cx^2+y^2-2a^2\tan^{-1}(\dfrac{y}{x})=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment