Iff(a)=0thenD−ais a factoroff(D)So, we havef(D)=(D−a)ϕ(D)f(D)1eax=(D−a)(ϕ(D))1eax=D−a1(ϕ(D)1eax)=D−a1(ϕ(a)1eax)=ϕ(a)1D−a1eax=ϕ(a)1eax∫e−ax⋅eaxdx=ϕ(a)1eax∫dx=ϕ(a)1xeaxDifferentiating wrt.Df′(D)=ϕ(D)+(D−a)ϕ′(D)⟹f′(a)=ϕ(a)∴f(D)1eax=ϕ(a)1xeax=f′(a)1xeax=xf′(a)1eax=xf′(D)1eaxReplaceDwithD2andawithiaf(D2)1eiax=xf′(D2)1eiaxf(D2)1(cos(ax)+isin(ax))=xf′(D2)1(cos(ax)+isin(ax)).SettingD=ia,f(D2)=f(−a2)=0Equating real and imaginary parts, we havei)f(D2)1(sin(ax))=xf′(D2)1(sin(ax))andii)f(D2)1(cos(ax))=xf′(D2)1(cos(ax))
Comments