Question #219350
(x^4D^4+6x^3D^3+9x^2D^2+3xD+1)y=(1+lnx)^2
1
Expert's answer
2021-07-23T05:42:44-0400

Given differential equation is:


(x4D4+6x3D3+9x2D2+3xD+1)y=(1+lnx)2(x^4D^4+6x^3D^3+9x^2D^2+3xD+1)y=(1+lnx)^2


Let us put, x=ez    z=ln(x),ddx=Dx = e^z \implies z = ln(x), \frac{d}{dx} = D


(D(D1)(D2)(D3)+6D(D1)(D2)+9D(D1)+3D+1)y=(1+z)2(D(D-1)(D-2)(D-3)+6D(D-1)(D-2)+9D(D-1)+3D+1 )y = (1+z)^2


(D4+2D2+1)y=(1+z)2(D^4+2D^2+1)y = (1+z)^2


The auxiliary equation will be,

D4+2D2+1=0D^4+2D^2+1 =0

D=i,i,i,iD = -i,-i,i,i

Then,

y=c1(1+z)cos(z)+c2(1+z)sin(z)y = c_1(1+z)cos(z)+c_2(1+z)sin(z)


P.I. 1D4+2D2+1(1+z)2=1D4+2D2+1(1+2z+z2)\frac{1}{D^4+2D^2+1}(1+z)^2 = \frac{1}{D^4+2D^2+1}(1+2z+z^2)



=11+(D4+2D2)(1+2z+z2)=(1+(D4+2D2))1(1+2z+z2)= \frac{1}{1+(D^4+2D^2)}(1+2z+z^2) = (1+(D^4+2D^2))^{-1}(1+2z+z^2)


Expanding (1+(D4+2D2))1(1+(D^4+2D^2))^{-1} binomially.


=(1(D4+2D2)+1(11)2!(D4+2D2)2+.........)(1+2z+z2)= (1-(D^4+2D^2)+\frac{-1(-1-1)}{2!}(D^4+2D^2)^2 + .........)(1+2z+z^2)


=(1+2z+z22(2))=(z2+2z3)= (1+2z+z^2 - 2(2)) = (z^2+2z-3)


The solution to the equation is,

y=c1(1+z)cos(z)+c2(1+z)sin(z)+(z2+2z3)y = c_1(1+z)cos(z)+c_2(1+z)sin(z) + (z^2+2z-3)



y=c1(1+lnx)cos(lnx)+c2(1+lnx)sin(lnx)+(lnx)2+3lnx3y = c_1(1+lnx)cos(lnx) + c_2 (1+lnx)sin(lnx) + (lnx)^2+3lnx - 3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS