Given differential equation is:
(x4D4+6x3D3+9x2D2+3xD+1)y=(1+lnx)2
Let us put, x=ez⟹z=ln(x),dxd=D
(D(D−1)(D−2)(D−3)+6D(D−1)(D−2)+9D(D−1)+3D+1)y=(1+z)2
(D4+2D2+1)y=(1+z)2
The auxiliary equation will be,
D4+2D2+1=0
D=−i,−i,i,i
Then,
y=c1(1+z)cos(z)+c2(1+z)sin(z)
P.I. D4+2D2+11(1+z)2=D4+2D2+11(1+2z+z2)
=1+(D4+2D2)1(1+2z+z2)=(1+(D4+2D2))−1(1+2z+z2)
Expanding (1+(D4+2D2))−1 binomially.
=(1−(D4+2D2)+2!−1(−1−1)(D4+2D2)2+.........)(1+2z+z2)
=(1+2z+z2−2(2))=(z2+2z−3)
The solution to the equation is,
y=c1(1+z)cos(z)+c2(1+z)sin(z)+(z2+2z−3)
y=c1(1+lnx)cos(lnx)+c2(1+lnx)sin(lnx)+(lnx)2+3lnx−3
Comments