Question #219107

 z2(p2 + q2 + 1) = k2



1
Expert's answer
2021-07-21T08:50:04-0400
f(x,y,z,p,q)=z2(p2+q2+1)k2=0f(x, y, z, p, q)=z^2(p^2+q^2+1)-k^2=0

fp=2pz2,fq=2qz2,f_p=2pz^2, f_q=2qz^2,


fx=0,fy=0,fz=2z(p2+q2+1)f_x=0, f_y=0, f_z=2z(p^2+q^2+1)

Charpit's Method


dxfp=dyfq=dzpfp+qfq=dp(fx+pfz)=dq(fy+qfz)\dfrac{dx}{f_p}=\dfrac{dy}{f_q}=\dfrac{dz}{pf_p+qf_q}=\dfrac{dp}{-(f_x+pf_z)}=\dfrac{dq}{-(f_y+qf_z)}

Then


dp(0+2pz(p2+q2+1))=dq(0+2qz(p2+q2+1))\dfrac{dp}{-(0+2pz(p^2+q^2+1))}=\dfrac{dq}{-(0+2qz(p^2+q^2+1))}

dpp=dqq\dfrac{dp}{p}=\dfrac{dq}{q}

dpp=dqq\int\dfrac{dp}{p}=\int\dfrac{dq}{q}

lnp=lnq+lna\ln|p|=\ln|q|+\ln a

p=qap=qa

Substitute


z2(a2q2+q2+1)=k2z^2(a^2q^2+q^2+1)=k^2


q2=k2z2z2(a2+1)q^2=\dfrac{k^2-z^2}{z^2(a^2+1)}

q=k2z2z2(a2+1)q=\sqrt{\dfrac{k^2-z^2}{z^2(a^2+1)}}

p=ak2z2z2(a2+1)p=a\sqrt{\dfrac{k^2-z^2}{z^2(a^2+1)}}

dz=ak2z2z2(a2+1)dx+k2z2z2(a2+1)dydz=a\sqrt{\dfrac{k^2-z^2}{z^2(a^2+1)}}dx+\sqrt{\dfrac{k^2-z^2}{z^2(a^2+1)}}dy

za2+1k2z2dz=adx+dyz\sqrt{\dfrac{a^2+1}{k^2-z^2}}dz=adx+dy

Integrate


a2+1k2z2=ax+y+b-\sqrt{a^2+1}\sqrt{k^2-z^2}=ax+y+b

a2+1k2z2+ax+y+b=0\sqrt{a^2+1}\sqrt{k^2-z^2}+ax+y+b=0




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS