Question #216743

xydy/dx+4x2+y2=0 where y(2)=-7,x>0


1
Expert's answer
2021-07-19T10:50:17-0400

Solution

xydydx+4x2+y2=0\frac{dy}{dx}+4x^2+y^2=0

Rewrite as follows;

dydx+4x2+y2xy=0\frac{dy}{dx}+\frac{4x^2+y^2}{xy}=0

Take y=vx,and dydx=v+xdvdx\frac{dy}{dx}=v+x\frac{dv}{dx}

Substitute in the equation;

v+xdvdx+4x2+v2x2vx2=0v+x\frac{dv}{dx}+\frac{4x^2+v^2x^2}{vx^2}=0

Simplify;

v+xdvdx+4+v2v=0v+x\frac{dv}{dx}+\frac{4+v^2}{v}=0

Compute by variables;

xdvdx+4+2v2v=0x\frac{dv}{dx}+\frac{4+2v^2}{v}=0

Seperate by variables;

v4+2v2dv+1xdx=0\frac{v}{4+2v^2}dv+\frac{1}{x}dx=0

Integrate;

ln(2v2+4)4+ln(x)=C\frac{ln(2v^2+4)}{4}+ln(x)=C

Which can be simplified as;

ln(2v2+4)+4ln(x)=C2 ,where C2=4C

Can be further simplified and written as;

ln[(2v2+4)×(x4)]=C2

Remove ln with e,since eln=1;

(2v2+4)×(x4)=C3;where C3=eC2e^{C_2}

But v=yxv=\frac yx

(2y2x2+4)×(x4)=C3(2\frac{y^2}{x^2}+4)×(x^4)=C_3

Simplify;

y2=(C34x42x2)(\frac{C_3-4x^4}{2x^2}) ,x>0

Apply the initial condition;

y(2)=-7

(-7)2=C3648\frac{C_3-64}{8}

C3=456

y=4564x22x2-\sqrt{\frac{456-4x^2}{2x^2}} ;x>0








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS