Solution
xydxdy+4x2+y2=0
Rewrite as follows;
dxdy+xy4x2+y2=0
Take y=vx,and dxdy=v+xdxdv
Substitute in the equation;
v+xdxdv+vx24x2+v2x2=0
Simplify;
v+xdxdv+v4+v2=0
Compute by variables;
xdxdv+v4+2v2=0
Seperate by variables;
4+2v2vdv+x1dx=0
Integrate;
4ln(2v2+4)+ln(x)=C
Which can be simplified as;
ln(2v2+4)+4ln(x)=C2 ,where C2=4C
Can be further simplified and written as;
ln[(2v2+4)×(x4)]=C2
Remove ln with e,since eln=1;
(2v2+4)×(x4)=C3;where C3=eC2
But v=xy
(2x2y2+4)×(x4)=C3
Simplify;
y2=(2x2C3−4x4) ,x>0
Apply the initial condition;
y(2)=-7
(-7)2=8C3−64
C3=456
y=−2x2456−4x2 ;x>0
Comments