Question #216557

Exercise 5.

Find the solution of

dy/dx= e2x+y 2x+y

that has y = 0 when x = 0


1
Expert's answer
2021-07-16T13:14:59-0400

Given equation,


dydx=e2x+y\dfrac{dy}{dx}=e^{2x+y}


    dydx=e2x.ey\implies \dfrac{dy}{dx}=e^{2x}.e^y


    eydy=e2xdx\implies e^{-y} dy=e^{2x} dx


Integrate Both the sides


    eydy=e2xdx\implies \int e^{-y} dy=\int e^{2x} dx



    ey=e2x2+C\implies -e^{-y}=\dfrac{e^{2x}}{2}+C



As,y(0)=0,


    e0=e02+C\implies -e^{-0}=\dfrac{e^0}{2}+C


So C=112=32C=-1-\dfrac{1}{2}=\dfrac{-3}{2}



So the solution is


ey=e2x232-e^{-y}=\dfrac{e^{2x}}{2}-\dfrac{3}{2}


i.e. ey=e2x2+32e^{-y}=-\dfrac{e^{2x}}{2}+\dfrac{3}{2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS