Exercise 5.
Find the solution of
dy/dx= e2x+y 2x+y
that has y = 0 when x = 0
Given equation,
dydx=e2x+y\dfrac{dy}{dx}=e^{2x+y}dxdy=e2x+y
⟹ dydx=e2x.ey\implies \dfrac{dy}{dx}=e^{2x}.e^y⟹dxdy=e2x.ey
⟹ e−ydy=e2xdx\implies e^{-y} dy=e^{2x} dx⟹e−ydy=e2xdx
Integrate Both the sides
⟹ ∫e−ydy=∫e2xdx\implies \int e^{-y} dy=\int e^{2x} dx⟹∫e−ydy=∫e2xdx
⟹ −e−y=e2x2+C\implies -e^{-y}=\dfrac{e^{2x}}{2}+C⟹−e−y=2e2x+C
As,y(0)=0,
⟹ −e−0=e02+C\implies -e^{-0}=\dfrac{e^0}{2}+C⟹−e−0=2e0+C
So C=−1−12=−32C=-1-\dfrac{1}{2}=\dfrac{-3}{2}C=−1−21=2−3
So the solution is
−e−y=e2x2−32-e^{-y}=\dfrac{e^{2x}}{2}-\dfrac{3}{2}−e−y=2e2x−23
i.e. e−y=−e2x2+32e^{-y}=-\dfrac{e^{2x}}{2}+\dfrac{3}{2}e−y=−2e2x+23
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments