f∗(s)=0∫1cos2πte−tsdt=−s10∫1cos2πtde−ts=
[−s1cos2πte−ts]01+s10∫1e−tsdcos2πt= s1−2sπ0∫1sin2πte−tsdt
0∫1sin2πte−tsdt=−s10∫1sin2πtde−ts=[−s1sin2πte−ts]01+s10∫1e−tsdsin2πt=
=−s1e−s+2sπ0∫1cos2πte−tsdt=−s1e−s+2sπf∗(s)
Hence, f∗(s)=s1−2sπ(−s1e−s+2sπf∗(s))
(1+4s2π2)f∗(s)=s1+2s2π
Therefore, f∗(s)=1+4s2π2s1+2s2π=π2+4s22π+4s
Comments