Question #216714

The continuous signal f(t) = cos(πt/2) sampled at 1 second intervals starting from t = 0.


(a) Find the Laplace transform of the sampled signal f*(t)


1
Expert's answer
2021-07-14T10:10:35-0400

f(s)=01cosπt2etsdt=1s01cosπt2dets=f^*(s)=\int\limits_0^1\cos\frac{\pi t}{2}e^{-ts}dt=-\frac{1}{s}\int\limits_0^1\cos\frac{\pi t}{2}de^{-ts}=

[1scosπt2ets]01+1s01etsdcosπt2=[-\frac{1}{s}\cos\frac{\pi t}{2}e^{-ts}]_0^1+\frac{1}{s}\int\limits_0^1e^{-ts}d\cos\frac{\pi t}{2}= 1sπ2s01sinπt2etsdt\frac{1}{s}-\frac{\pi}{2s}\int\limits_0^1\sin\frac{\pi t}{2}e^{-ts}dt


01sinπt2etsdt=1s01sinπt2dets=\int\limits_0^1\sin\frac{\pi t}{2}e^{-ts}dt=-\frac{1}{s}\int\limits_0^1\sin\frac{\pi t}{2}de^{-ts}=[1ssinπt2ets]01+1s01etsdsinπt2=[-\frac{1}{s}\sin\frac{\pi t}{2}e^{-ts}]_0^1+\frac{1}{s}\int\limits_0^1e^{-ts}d\sin\frac{\pi t}{2}=

=1ses+π2s01cosπt2etsdt=1ses+π2sf(s)=-\frac{1}{s}e^{-s}+\frac{\pi}{2s}\int\limits_0^1\cos\frac{\pi t}{2}e^{-ts}dt=-\frac{1}{s}e^{-s}+\frac{\pi}{2s}f^*(s)


Hence, f(s)=1sπ2s(1ses+π2sf(s))f^*(s)=\frac{1}{s}-\frac{\pi}{2s}\left(-\frac{1}{s}e^{-s}+\frac{\pi}{2s}f^*(s)\right)

(1+π24s2)f(s)=1s+π2s2(1+\frac{\pi^2}{4s^2})f^*(s)=\frac{1}{s}+\frac{\pi}{2s^2}


Therefore, f(s)=1s+π2s21+π24s2=2π+4sπ2+4s2f^*(s)=\frac{\frac{1}{s}+\frac{\pi}{2s^2}}{1+\frac{\pi^2}{4s^2}}=\frac{2\pi+4s}{\pi^2+4s^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS