Question #216531

The population in a town satisfies the logistic law.

dx/dt=x/100-x2/108

where t is the number of years after the 2019 population census. if the population x was 100,000 in 2019.determine

  1. population x as a function of time
  2. The year the population will be double
1
Expert's answer
2021-07-14T10:15:44-0400
dxdt=x100x2108\dfrac{dx}{dt}=\dfrac{x}{100}-\dfrac{x^2}{10^8}

108dx106xx2=dt\int\dfrac{10^8dx}{10^6x-x^2}=\int dt

100dxx+100dx106x=dt\int\dfrac{100dx}{x}+\int\dfrac{100dx}{10^6-x}=\int dt

100lnx100lnx106=t+100lnC100\ln|x|-100\ln|x-10^6|=t+100\ln C

lnxx106=0.01t+lnC\ln\dfrac{x}{|x-10^6|}=0.01t+\ln C

xx106=Ce0.01t\dfrac{x}{|x-10^6|}=Ce^{0.01t}

x(0)=100000x(0)=100000


105105106=Ce0.01(0)\dfrac{10^5}{|10^5-10^6|}=Ce^{0.01(0)}

C=19C=\dfrac{1}{9}

xx106=19e0.01t\dfrac{x}{|x-10^6|}=\dfrac{1}{9}e^{0.01t}

1. If x<1000000x<1000000


9x=(106x)e0.01t9x=(10^6-x)e^{0.01t}

x(t)=1061+9e0.01tx(t)=\dfrac{10^6}{1+9e^{-0.01t}}

2,

x=2(100000)=2×105x=2(100000)=2\times10^5


2×1051062×105=19e0.01t\dfrac{2\times10^5}{10^6-2\times10^5}=\dfrac{1}{9}e^{0.01t}

18=8e0.01t18=8e^{0.01t}

0.01t=ln2.250.01t=\ln 2.25

t=100ln2.25 yearst=100\ln2.25\ years

t=81.1 yearst=81.1\ years


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS