Answer to Question #212974 in Differential Equations for eve

Question #212974

given the system express y as a function of t

  1. 3dx/dt+2dy/dt-x+y=t-1
  2. dx/dt+dy/dt-x=t+2
1
Expert's answer
2021-07-08T16:48:49-0400

Given the system let us express yy as a function of t.t. Let us add to 3dxdt+2dydtx+y=t13\frac{dx}{dt}+2\frac{dy}{dt}-x+y=t-1 the equation dxdt+dydtx=t+2\frac{dx}{dt}+\frac{dy}{dt}-x=t+2 multiplied by 3.-3. We have that dydt+2x+y=2t7.-\frac{dy}{dt}+2x+y=-2t-7. It follows that x=12dydt12yt72,x=\frac{1}{2}\frac{dy}{dt}-\frac{1}{2}y-t-\frac{7}{2}, and hence dxdt=12d2ydt212dydt1.\frac{dx}{dt}=\frac{1}{2}\frac{d^2y}{dt^2}-\frac{1}{2}\frac{dy}{dt}-1. We get the equation 12d2ydt212dydt1+dydt(12dydt12yt72)=t+2\frac{1}{2}\frac{d^2y}{dt^2}-\frac{1}{2}\frac{dy}{dt}-1+\frac{dy}{dt}-(\frac{1}{2}\frac{dy}{dt}-\frac{1}{2}y-t-\frac{7}{2})=t+2 which is equivalent to 12d2ydt2+12y=12,\frac{1}{2}\frac{d^2y}{dt^2}+\frac{1}{2}y=-\frac{1}{2}, and hence to d2ydt2+y=1.\frac{d^2y}{dt^2}+y=-1. The characteristic equation k2+1=0k^2+1=0 have the roots k1=ik_1=i and k2=i.k_2=-i. It follows that the solution is of the form y(t)=C1cost+C2sint+yp,y(t)=C_1\cos t+C_2\sin t+y_p, where yp=a.y_p=a. It follows that d2ypdt2=0,\frac{d^2y_p}{dt^2}=0, and hence a=1.a=-1. Therefore, the solution is the following:

y(t)=C1cost+C2sint1.y(t)=C_1\cos t+C_2\sin t-1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment