Question #212965

The population N(t) of a species of micro-organism in a laboratory setting at any time t is established to vary under the influence of a certain chemical at a rate given by dN/dt=t-2et show that N(t)=t-2et+c.hence if N(0)=400 determine the population when t=5


1
Expert's answer
2021-07-08T09:20:53-0400

Given -


dNdt=\dfrac{dN}{dt}= t2ett-2e^{t}



Then , dN=(t2et)dtdN=(t-2e^{t})dt


integrate both sides we get ,



dN=(t2et)dt\int dN=\int(t-2e^{t})dt



N(t)=t222et+cN(t)=\dfrac{t^{2}}{2}-2e^{t}+c



given -


N(0)=400N(0)=400



=400=0222e0+c=400=\dfrac{0^{2}}{2}-2e^{0}+c     \implies c=402c=402


N(t)=N(t)= t222et+402\dfrac{t^{2}}{2}-2e^{t}+402


now putting t=5 we get ,


N(5)=N(5)=5222e5+402=118\dfrac{5^{2}}{2}-2e^{5}+402=118







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS