x is an ordinary point of the differential equation if a0=0The Taylor’s series is given by:y(x)=y(x0)+y′(x0)(x−x0)+y′′(x0)2!(x−x0)2+y′′′(x0)3!(x−x0)3Where y(x0)=y(0)=−1 and y′(x0)=y′(0)=5 From the question we were given:(2x3−3)y′′−2xy′+y=0⟹y′′=2x3−32xy′−y⟹y′′(0)=2(0)3−32(0)(5)−(−1)=3−1We now compute y′′′ using quotient rule:⟹y′′′=(2x3−3)2(2x3−3)(2xy′′+2y′−y′)−(2xy′−y)6x2=(2x3−3)2(2x3−3)(2xy′′+y′)−(2xy′−y)6x2⟹y′′′(0)=(2(0)3−3)2(2(0)3−3)(2(0)(3−1)+5)−(2(0)(5)−(−1))(6(0)2)=9−3(5)=3−5⟹y′′′(0)=3−5Inputing the valuesof y(0),y′(0),y′′(0) and y′′′(0) into the Taylor’s series above :y(x)=−1+5x−61x2−185x3
Comments