Answer to Question #212953 in Differential Equations for stacia

Question #212953

find a series solution in powers of x of the equation

2x2d2y/dx2+xdy/dx+(x2-1)y=0


1
Expert's answer
2021-07-05T14:21:54-0400

Solution

Let

y(x)=n=0anxny\left(x\right)=\sum_{n=0}^{\infty}{a_nx^n}

dydx=n=0(n+1)an+1xn\frac{dy}{dx}=\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}x^n}

d2ydx2=n=0(n+1)(n+2)an+2xn\frac{d^2y}{dx^2}=\sum_{n=0}^{\infty}{\left(n+1\right)\left(n+2\right)a_{n+2}x^n}

Substitution into equation:

2n=0(n+1)(n+2)an+2xn+2+n=0(n+1)an+1xn+1+n=0anxn+2n=0anxn=02\sum_{n=0}^{\infty}{\left(n+1\right)\left(n+2\right)a_{n+2}x^{n+2}}+\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}x^{n+1}}+\sum_{n=0}^{\infty}{a_nx^{n+2}}-\sum_{n=0}^{\infty}{a_nx^n}=0

a1xa0a1x+2n=2n(n1)anxn+n=2nanxn+n=2an2xnn=2anxn=0a_1x-a_0-a_1x+2\sum_{n=2}^{\infty}{n\left(n-1\right)a_nx^n}+\sum_{n=2}^{\infty}{na_nx^n}+\sum_{n=2}^{\infty}{a_{n-2}x^n}-\sum_{n=2}^{\infty}{a_nx^n}=0

Coefficient near xn are equal to zero.

n=0: a0=0

n=1: 0=0 for any a1  

n>1: 2n(n-1)an+nan+an-2-an=0 => (2n2-n-1)an+ an-2 = 0 =>

an =-an-2/ (2n2-n-1)= -an-2/ (2n2-n-1) = -an-2/ [(2n+1)(n-1)]

So a2k=0 for any k≥0

and finally a2k+1  = -a2k-1/ [(4k+3)2k] for k>0

Solution is

y(x)=k=1a2k1x2k1y(x)=\sum_{k=1}^{\infty}{a_{2k-1}x^{2k-1}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment