Solution
Let
y(x)=∑n=0∞anxn
dxdy=∑n=0∞(n+1)an+1xn
dx2d2y=∑n=0∞(n+1)(n+2)an+2xn
Substitution into equation:
2∑n=0∞(n+1)(n+2)an+2xn+2+∑n=0∞(n+1)an+1xn+1+∑n=0∞anxn+2−∑n=0∞anxn=0
a1x−a0−a1x+2∑n=2∞n(n−1)anxn+∑n=2∞nanxn+∑n=2∞an−2xn−∑n=2∞anxn=0
Coefficient near xn are equal to zero.
n=0: a0=0
n=1: 0=0 for any a1
n>1: 2n(n-1)an+nan+an-2-an=0 => (2n2-n-1)an+ an-2 = 0 =>
an =-an-2/ (2n2-n-1)= -an-2/ (2n2-n-1) = -an-2/ [(2n+1)(n-1)]
So a2k=0 for any k≥0
and finally a2k+1 = -a2k-1/ [(4k+3)2k] for k>0
Solution is
y(x)=∑k=1∞a2k−1x2k−1
Comments
Leave a comment